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Abstract 

 

Silicon nitride (Si3N4) passivation layers on AlGaN/GaN heterojunction devices can 

significantly improve performance by reducing electron traps at the surface.  The 

radiation hardness of  Si3N4 is important to  understand in order to obtain further 

technology developments. This research studies the effect of displacement damage 

caused by 1.0 MeV electron irradiation on AlGaN/GaN HEMTs as a function of 

passivation-layer thickness for two types of heterostructure layers.  Passivation layer 

thicknesses of 0, 20, 50, and 120 nanometers were explored for the AlGaN/GaN test 

structures with either an AlN nucleation layer or a GaN cap structure.  Hall effect, 

photoluminescence (PL), and deep-level transient spectroscopy (DLTS) measurements 

were made on the test structures before and immediately after 1.0 MeV electron 

irradiations at fluences of 1016 cm-2.  Changes in carrier mobility, carrier concentration, 

and conductivity were monitored as a function of Si3N4 thickness.  Models were 

developed that relate the device structure and passivation-layer thickness to changes 

observed in PL and DLTS measurements.  A software model is developed to determine 

the production rate of defects from 1.0 MeV electrons that can be used for other electron 

energies and other materials. The presence of either the 50- or 120-nm Si3N4 passivation 

layer preserved the channel current for both structures and appears to be in the optimal 

range to preserve radiation hardness.
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EFFECT OF VARIATION OF SILICON NITRIDE PASSIVATION LAYER ON 

ELECTRON IRRADIATED ALUMINUM GALLIUM NITRIDE/GALLIUM 

NITRIDE HEMT STRUCTURES 

 

I.  Introduction 

 

1.1.  General Issue 

 Type III-V devices are widely deployed in DOD RF systems, particularly space 

systems.  Reproducing the space environment in which these devices will operate can 

show how they would perform under real-world conditions.  With the expanding US Air 

Force’s use of emerging GaN High-Electron-Mobility-Transistor (HEMT) technologies, 

there is a need for a better understanding of the materials and device behaviors in such an 

environment. AlGaN/GaN structures are known to be preferred materials for the 

manufacture of fast transistors. This present research is directed at a study of the radiation 

induced changes and damage such AlGaN/GaN devices would encounter in space. 

Over the past few years, several factors have emerged as playing major roles in 

the developing electronics market. The DOD, in general, and the aerospace industry in 

particular, are users of a small part of an electronics market that is now dominated by 

commercial interests and profits. In the 1990’s, military standards were replaced by their 

commercial counterparts. To complicate matters further, failure mechanisms are now 

more complex with more sophisticated and less-proven semiconductors.  The available 

body of knowledge for AlGaN\GaN devices is much more limited as compared to that for 

silicon and the existing lifetime data for the devices does not match the expected 
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capability. This points to a need for further basic studies of device structures, especially 

those studies including operating and environmental conditions. By studying the effects 

of displacement damage created by electron irradiation levels comparable to that found in 

Air Force space-borne operational environments, we can better predict the effects on 

device performance metrics and radiation hardness.  Studies are needed that include 

structures with and without passivation layers, so that the effects of passivation layers on 

radiation hardness as a function of layer thickness can be determined. 

For satellite payloads, weight, area, and volume are critical considerations and 

translate directly to cost. However, the addition of very thin silicon nitride layers on 

already fabricated devices adds very little in terms of weight, area, and volume, and 

requires no modification of device geometry. This same consideration allows for 

miniaturization of electronic instruments used in other radiation environments. Clearly, 

this solution to the radiation hardness problem is preferable to one that requires the 

addition of heavy shielding or the use of lower-performance devices that have better 

natural radiation hardness.  

Other AlGaN/GaN HEMT problem areas that have been identified recently 

include (i) impact ionization and channel breakdown, (ii) gate-tunnel leakage and surface 

traps, and (iii) charge-dipole domain and electric field-breakdown. Normal gate leakage 

results in surface conduction, which can accumulate as a virtual gate and lead to 

performance degradation and at a critical electric field, a conducting path to the channel 

can be formed.  

High-energy particles such as electrons and protons produce both displacement 

and ionization damage. Decades of research have identified the primary concern for 
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AlGaN/GaN to be displacement damage.  Such damage occurs when the incident particle 

has enough energy to move the atom from its normal lattice position. According to 

Johnston (Johnston, 2010), who analyzed space electronics involving silicon and 

AlGaAs/GaAs devices, radiation induced traps are affected by hydrogen, which is 

introduced during the processing steps of the devices. Due to the migration of these 

hydrogen related species, devices using silicon nitride had a lower sensitivity to radiation 

than those using other passivation materials, such as silicon carbide or other deposited 

oxides. 

Numerous papers (Atwater, 2007; Moran et al, 2009; Tsurumi et al, 2008; Ohno 

et al, 2004; Arulkumaran et al, 2004) have documented the use of Si3N4 passivation 

layers in various device structures, including AlGaAs/GaAs high electron mobility 

transistors (HEMTs). Their use on the gate-source and gate-drain recess regions of these 

structures has also been documented by Chou et al. (Chou et al, 2002). Also, Si3N4 

passivation of AlGaAs/GaAs and InP/InGaAs heterojunction bipolar transistors (HBTs) 

were investigated for reducing surface recombination and improving current gain. 

However, none of these prior studies addressed the improvement of radiation resistance. 

It is emphasized that these electronic benefits depend on the Si3N4 deposition method. 

However, the use of Si3N4 passivation layers for radiation hardness is not documented to 

the author’s knowledge. 

Silicon devices are poor candidates for high power, high frequency space 

electronics, but attempts to improve their performance in such environments have been 

done.  Devices such as silicon MOSFETS have used silicon dioxide for passivation.  As 

early as the 1980s, use of a Si3N4 layer on silicon operational amplifiers to achieve 
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radiation resistant circuits was discussed. There now exists a need for improved life time 

and reliability for AlGaN\GaN HEMTs as well as for documentation of its progression 

for space environments.   

AlGaN/GaN heterostructures have great promise in a variety of high power and 

fast switching applications. Much of this is owing to the high electron mobility (generally 

accepted value of 1880 cm2/(V·s)) of the 2DEG. Comparable GaN transistors have been 

shown to have  resistances lower than silicon by orders of magnitude. Devices used in 

space-borne applications experience both protons and electrons from the earth’s radiation 

belt.  The space environment in which these AlGaN\GaN High Electron Mobility 

Transistors (HEMTs) need to operate requires that they be operational under the 

equivalent of 1.0 MeV electron irradiation (ICRU Report No. 37, 1984). Such high-

energy particles cause displacement damage, which can become deep electron or hole 

traps; more rarely, they cause shallow donors or acceptors.  For 1.0 MeV electron 

irradiation, a dominant defect that is produced is a 0.06 eV donor, and which was 

identified using Hall Effect measurements as a nitrogen vacancy (Look et al, 1997). 

Previous studies used electron irradiation on RF GaN HEMTs and characterized their 

degradation (Kalavagunta, 2009).  Other studies have examined the role of bulk traps in 

device degradation (Meyer, 2008; Fang et al, 2011; Polyakov et al, 2008). None of these 

studies, however, focused on the role of the Si3N4 thickness in the formation of the 

surface states, either prior to or following 1.0 MeV electron irradiations.  

It is believed that in the presence of irradiation, Si3N4 passivation reduces the 

surface donor states which cause trapping in the device, and thus offsets the damage. 

With the use of Si3N4 passivation on AlGaN\GaN heterojunction devices, it may be 
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possible to achieve improvements in device performance and also radiation hardness, 

while concurrently preserving its reliability and performance (Jackson et al, 2013).  

Furthermore, Hall carrier density data indicates the surface states are donors. Such 

measurements indicate the degree of preservation of mobility and conductivity as a 

function of Si3N4 thickness.  

The use of Si3N4 in mitigating traps that cause gate lag, virtual gates, and “the 

how and what” of passivation on the device will be discussed and modeled in this present 

work. The scattering mechanisms known to exist in these structures have been 

incorporated in the models and are shown to change with variation of Si3N4 thickness. 

Experimental data show changes in carrier density with both Si3N4 thickness, structure 

and electron irradiation. As far as temperature dependence, the carrier density curves are 

statistically flat over the temperature range of 10-300 K. The effect of structure variations 

as well as the differences pre- and post-irradiation on the transport properties will be 

shown in the experimental results sections. Photoluminescence reveals intrinsic as well as 

extrinsic impurities, and traps in as-grown and irradiated samples, thereby giving a 

window to look at the changes in electron transport. The capacitance-voltage experiments 

show the stretch out-of-gate (Schottky) capacitance (Cg-Vg) curves due to interface traps.  

Electron irradiation creates acceptor type defects. These displacement damage defects, a 

dominant concern in device degradation, are charged. Electrically active traps in the area 

of the gate profoundly affect device characteristics.  Not treated in this study, but of 

critical importance to future work, are stress and device self-heating.  

Although Si3N4 is currently used for passivation, the thickness range employed in 

this research has not been published to date. Also, studies have not been carried out on 
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the effect of the variation of the thickness of the Si3N4 passivation layer on HEMT 

structures subjected to 1.0 MeV electron irradiation.  For AlGaN/GaN, there is no true 

consensus on the location and energy of the post radiation defects, but many researchers 

have predicted these in similar materials based on DLTS, PL, and Hall measurements.   

 

1.2. Research Objective 

 This research will determine the effect of the thickness of a Si3N4 passivation 

layer on the properties of two different HEMT structures, specifically  AlGaN/AlN/GaN 

and GaN/AlGaN/GaN.  Structures were measured both before and after 1.0 MeV electron 

irradiations. HEMT performance metrics will be determined through measurements of 

Hall Effect, photoluminescence, Cg-Vg, gate current (Ig-Vg), and DLTS. 

The Si3N4 passivation layer thicknesses used in this work are 0, 20, 50, and 120 

nm deposited on bare epilayer AlGaN/AlN/GaN and GaN/AlGaN/GaN structures.   

These structures will be characterized before and immediately after 1.0 MeV electron 

irradiation at fluences of 1016 cm-2 with room temperature (RT) and temperature 

dependent (TD) Hall effect and low temperature PL. These measurements were chosen to 

give insight into the displacement damage caused by the radiation, as a function of both 

Si3N4 thickness, device structure and irradiation, as well as to show how the mechanisms 

involved can be related to the lifetime and reliability of comparable HEMTs. 

 

1.3. Investigative Questions 

 The questions to be investigated in this dissertation research are:  What is the 

effect of (a) the particular device structure, and (b) the Si3N4 passivation layer thickness 
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on the transport characteristics (such as mobility, carrier density, conductivity) and 

electrical metrics (such as Ig-Vg, Cg-Vg) of a HEMT structure before and after 

irradiation with 1 MeV electrons?  In particular:  How do the transport characteristics 

(such as the mobility and carrier density) both before and after irradiation with 1 MeV 

electrons depend on the particular device structure and the Si3N4 passivation thickness?  

How do the leakage current measurements after radiation depend on the Si3N4 passivation 

thickness and on the device structure? 

 

1.4. Methodology 

(1) Wafers of undoped AlGaN/GaN were grown using MOCVD on 6H SiC 

substrates.  

(2) The wafers were sectioned into four AlGaN/AlN/GaN or GaN/AlGaN/GaN 

sections, and different thicknesses of Si3N4 passivation (0, 20, 50, and 120 

nm) were applied per wafer quadrant. The Si3N4 deposition was done by 

PECVD.  

(3)  Wafers were then diced to 0.5 cm × 0.5 cm samples using a diamond saw. 

Samples from each wafer were pre-characterized in order to establish a 

baseline and to observe the variation in native defects owing to fabrication 

method. 

(4) Samples were characterized using temperature-dependent Hall mobility, 

carrier density, conductivity and its corresponding resistivity. Electrical device 

characterization was done through temperature dependent measurements of 

gate voltage, Ig-Vg, and gate capacitance, Cg-Vg.  
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(5) Supportive measurements included DLTS and photoluminescence.  

(6) Parameters affecting device performance were modeled using radiation 

damage models, including simulations in Casino, a defect production 

algorithm based on the Bethe-Bloch equation, and a mobility scattering model 

using Nextnano to study the effect of structure on HEMT scattering 

mechanisms, the conduction band structure, and the electric field. 

Radiation creates damage in these structures, but the damage of concern for 

AlGaN/GaN is displacement damage, which occurs when the incident electron has 

enough energy to move an atom from its normal lattice position. Electron irradiation 

using energies 1.0 MeV and higher creates point defects (e.g., N interstitials) and a 

number of acceptor defects, including Ga vacancies. While the radiation can create 

donors and acceptors, these displacements can also be described as radiation induced 

acceptors which cause a subsequent decrease in carrier density in the 2DEG. Additional 

scattering centers, also created by the radiation, reduce the mobility and conductivity and 

thus the device performance. In the as-grown material, defects have previously been 

identified as intrinsic like threading dislocations and dangling bonds at the AlGaN 

surface. Passivation of the surface donor states has been shown to reduce current collapse 

but also to increase gate leakage current. 

 

1.5. Key Results Summary 

The key results of this dissertation research are determination of: 

1. The effect of 1 MeV electron radiation on AlGaN/AlN/GaN and 

GaN/AlGaN/GaN HEMT structures passivated with various thicknesses of 



 

9 
 

Si3N4 using measurements of Hall mobility, carrier density, conductivity, as 

well as gate (Schottky) leakage current and gate capacitance;  

2. An optimum passivation layer thickness for 1.0 MeV electron irradiated 

AlGaN/AlN/GaN and GaN/AlGaN/GaN which preserves channel current;  

3. The best configuration between AlGaN/AlN/GaN and GaN/AlGaN/GaN to 

assure lowest post radiation leakage current; 

4. The relationship between post radiation Schottky area (gate) leakage on 

AlGaN/AlN/GaN and GaN/AlGaN/GaN HEMT structures and traps observed 

via DLTS and photoluminescence; and 

5. A model for post-radiation PL and its relationship to observed post-radiation 

charge balance due to radiation induced acceptor and donor changes. 

 

1.6. Preview 

Chapter 2 presents an overview of the physics used in understanding the results in 

this study. After explaining basic HEMT device physics, including polarization and 

2DEG formation, this chapter will present the physics underlying Hall mobility, carrier 

density and conductivity; the theory behind the observed photoluminescence transitions 

including the energy balance involved in donor acceptor (DAP) pairs; the physics behind 

both near band edge and deep centers; and a short explanation of DLTS.  This is followed 

by a short overview of trap analysis which is a common underlying factor in all device 

degradation metrics as well as a brief explanation of Bethe-Bloch and Schrodinger-

Poisson theory used in the models.  
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Chapter 3 presents a brief review of some pertinent previous 1 MeV and high 

energy electron radiation studies of AlGaN/GaN HEMT structures along with the models 

used for high energy radiation damage. This is preceded by a short discussion of radiation 

effects physics and models, including both displacement and ionization damage.  

Chapter 4 presents experimental techniques, equipment set-ups , device layouts, 

and preparation techniques used.  In addition, design-of-experiment tables will be given 

along with tables listing the experimental runs. 

Chapter 5 presents the results of Hall transport measurements on both 

AlGaN/AlN/GaN and GaN/AlGaN/GaN structures for various Si3N4 passivation layer 

thicknesses before and after 1.0 MeV electron irradiation. Results of the modeled 

mobility as a function of scattering mechanisms, modeled band diagrams and electron 

density are shown for each structure both with and without passivation.  Pre- and post-

irradiation PL results are presented. Calculations of the rate-of-production of defects in 

each layer of the device using a defect production algorithm are also given. Finally, 

Casino (Monte Carlo) results are given for the structures showing the spatial location of 

the primary and backscattered electrons in order to assess the damage regime.  

Chapter 6 presents results of gate (Schottky) leakage current and capacitance 

measurements before and after irradiation for both structures as a function of Si3N4 

thickness variation. Pre- and post- radiation results for DLTS are given and related to the 

additional post-radiation leakage and interface trapping observed.  

Chapter 7 presents an analysis and discussion of the results presented in Chapters 

5 and 6, and provides detailed models. An analysis of the effects of Si3N4 passivation, 

passivation layer thickness, device structure, and radiation effects are given for both 
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AlGaN/AlN/GaN and GaN/AlGaN/GaN. Changes in barrier heights and threshold 

voltages affect the changes due to passivation and radiation, and are added to the results 

of Chapter 6 to enhance the analysis. Models are given that explain the observed PL and 

DLTS results of Chapters 5 and 6 in terms of charge balance and energy balance, as well 

as offering a qualitative and quantitative trap analysis that leads to the observed post-

radiation changes. 

Chapter 8 presents the final conclusions of the research, its potential value and 

suggestions for future work related to this research. 
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Chapter II.  AlGaN/GaN Characterization Physics 

High Electron Mobility Transistors (HEMTs) rely on a complex synergy of 

multiple materials that enable transport mechanisms on the quantum level and are 

explained with electrodynamics on the device level.  This chapter will summarize the 

physics underlying both the measurements and characterization methods needed to 

understand the results of this research for AlGaN/GaN “always on” HEMTs.  

 

2.1.   AlGaN/GaN HEMT Physics 

 In Chapters 5 and 6 of this dissertation, the characterization results on the device 

structures will be reported. To understand these results, the basics of the device physics, 

the characterization techniques used, and the results obtained will be presented in this 

chapter. The basic structures will be discussed first, followed by the overall charge 

balance, the 2DEG, polarization basics, device control, as well as the purpose and effects 

of passivation.  The chapter will conclude with a discussion of the characterization 

methods used. 

 

 2.1.1.  Device Structure 

 The basic device structures used in this study are shown in Figure 2.1. It should 

be noted that these devices do not have a gate finger or a field plate, as is normal for a 

HEMT device, so the Schottky (gate area) measurements carried out in Chapter 6 must be 

interpreted with this understanding. For the structure on the right, the AlN layer adds to 

the polarization, which then raises the energy bands and, if charge in the Si3N4 produces 
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polarization in the same direction, then those bands will be raised further resulting in a 

greater transfer of charge and electrons into the 2DEG layer or the channel (which will be 

the discussed in Section 2.1.3).   For the structure on the left, the GaN cap layer serves as 

a surface charge control layer, reducing the effect of polarization charge; the cap layer 

screens the 2DEG from surface traps that lead to current collapse. It therefore has a lower 

carrier density than a similar structure without a GaN cap. These structural parameters 

effect the 2DEG and hence the entire device behavior.  

 

 

 

 

 

 

 

 

Figure 2.1. The AlGaN/AlN/GaN (left) and the GaN/AlGaN/GaN (right) device 
structures used in this research. 
 

2.1.2.  Charge Balance 

Improved device performance and control can be obtained by understanding the 

source of the 2DEG electrons.  The source of the 2DEG electrons in a HEMT is different 

for AlGaN/GaN than AlGaAs/GaAs, the latter obtaining its channel electrons from the 
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bulk or buffer layer.  Figure 2.2 shows the general conduction band diagram for 

AlGaN/GaN. The balance equation for the charges (Ibbetson et al, 2000) is given below.  

                    σpz  + -σpz   +  +σAlGaN  + σBuffer  + σ surface  + -σAlGaN   = q ns                 (2.1) 

 

The first two terms on the right, σpz  and -σpz , are the piezoelectrically polarization 

induced        

.  

Figure 2.2.  A conduction band diagram for AlGaN/AlN/GaN with an abrupt interface. 
 
 

charge densities at the AlGaN/GaN interface. The polarization charges at this interface 

are responsible for the formation of the 2DEG quantum well in which electrons are 

confined. However, these charges sum approximately to a net zero dipole. There is the 

integrated sheet charge contributions +σAlGaN  and -σAlGaN  from ionized donors in the 

AlGaN, and thus have both positive and negative components.  The fourth term is the 

buffer charge, which is negative if the 2DEG is to be confined to the AlGaN/GaN 

interface. The magnitude of this charge is ideally very small and can be assumed zero. 

There is also a surface charge due to ionized surface states. On the right hand side of the 
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equation, these sum to the negative charge in the 2 DEG, qns. It should be noted that 

these charges all sum to zero in an unbiased device since the device must be charge 

neutral in the absence of an external field.  

  We now have the charge balance Equation 2.1 reducing to the following, giving 

the source of the 2DEG electrons. Hence the number of electrons in the 2DEG is equal to 

the                                                                          

                                σsurface + σ AlGaN  = qns                                              (2.2) 

number of ionized donors in the AlGaN ± the number of ionized donor- (or acceptor-) 

like states on the surface. If the AlGaN barrier is undoped, then the number of 2DEG 

electrons is due to the donor-like surface states; however, the AlGaN is unintentionally 

doped.   

 
Figure 2.3. AlGaN/GaN band diagram showing polarization charges. 

  

The band diagram in Figure 2.3 shows where the surface donors can reside and 

where the energy levels are relative to the conduction band.  Note the surface is typically 

defined as having a depth of up to 1.2 eV below the conduction band, but its location is 

not at a fixed level.  For the charge balance equation and the above band diagram, the 
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negative charges must equal the positive charges.  Donors possess electrons which can 

drop to acceptor levels which are at lower energy just above the valence band (not 

shown). Normally, the transition to the acceptor levels will not be complete because there 

are more donors than acceptors in n-type GaN (also called n-GaN). The neutral area is 

where the band of constant slope (straight line). As a result, σBuffer is going to have a few 

more donors since this material is n type, but the contribution is considered negligible. 

The 2DEG charge is negative, due to the acceptors in the buffer. Balancing this negative 

charge is the positive charge from the surface (the AlGaN surface, as well as any AlGaN 

bulk that is charged). The polarization charges cancel out and are not mobile, but they do 

provide a field.  

If there is a surface charge, the bands will bend and then the derivative of the 

band at the surface will be defined by Gauss’s law.  If there is a volume charge, then 

there is no band bending, and the depiction will be a straight line in a band diagram. If 

there is no charge at either the surface or in the volume, the conduction band line will be 

flat. If there is charge in the bulk portion, then the conduction band will be an angled 

straight line. When the band is curved, there is an implicit assumption that there is charge 

in at the surface, as the derivative of Gausses law would be non-zero. 

  The surface states here could be due to dangling bonds, impurities, etc., but are 

localized. In the band diagram above, they are the interface to the gate area.  These states 

have to be high (the higher they are, the easier they are to transfer charge) so that efficient 

transfer of electrons occurs to the lowest energy state in the vicinity (i.e., the 2DEG). 

Also, the higher the AlGaN band edge (with increased Al content), the more likely the 

electrons are to transfer because the potential difference is much larger. The surface 
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donor states are thought to have a density of approximately 2 x 1013 cm-2. For an electron 

density of ~1 x 1013 cm-2 in the 2DEG, since there are more electrons than that at the 

surface and all will not transfer to the 2DEG, a number of 2 x 1013 cm-2 is a reasonable 

approximation.  

 

2.1.3.  Two dimensional electron gas (2DEG) 

  The above discussion addressed how the 2DEG (as shown in Figure 2.2 and 2.3) 

between the AlGaN and GaN is polarization-induced and addressed the source of the 

carriers in the 2DEG (Eq. 2.2). The 2DEG formation is a two-part process including both 

that of the quantum well formation and then its subsequent population with carriers.  The 

2DEG for AlGaN/GaN is a triangular quantum well that can be described by a 1 x 1 

Hamiltonian which will be further described in section 2.6.1 under Schrodinger-Poisson’s 

equation (Jogai, 2003).  

In the preceding sections, the 2DEG charge was shown as due to the sum of 

positive charges in the device. It will also be shown to be a function of the surface 

potential in section 2.2.3. Here the 2DEG charge is related to the surface donor states by 

appending the surface and interface charges to a very common integral as defined in 

(Ambacher et al, 2000): 

              σ2DEG =  ∫ Nd (E)[1− f(E)]dE −  ∫ Na(E)Ea
Ev

Ec
Ed

f(E)dE − σsurf   + σin        (2.3) 

where σsurf and σin are the polarization induced bound charge at the surface and the charge 

at the interface.  Nd is the donor trap site density and Na is the acceptor trap site density. 

Ec and Ev are the energy boundaries defined by the conduction and valence band edges, 
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and Ed and Ea are the donor and acceptor boundaries. From here, a bare surface barrier 

height of ~ 1.0 -1.8 eV  was calculated  with a surface density for donors of ~1.6 x 1013  

cm-2 eV-1, which supports the model for surface donors as the source of 2DEG electrons 

(Prunty et al, 2000). So, again it can be assumed that surface donors are the source of 

electrons.  At equilibrium, the Fermi level at the surface is below some of the donor 

states, and those ionized states contribute the electrons that give rise to the 2DEG at the 

interface. As the thickness of the barrier layer increases, the surface Fermi level is 

lowered more and more with respect to the conduction band, increasing the surface 

barrier causing more and more donor states to be emptied, and thus increasing the 2DEG 

density.  

 

2.1.4.  Polarization: AlGaN/GaN Surface and 2DEG  

Significant spontaneous polarization occurs in both GaN and AlGaN. This 

polarization charge is due to the fact that the fixed charge accumulating at the hetero-

interfaces is intrinsic and exists in the unstrained crystal. This produces polarization 

induced fields, and also can produce a high carrier density 2DEG at the interface between 

the two layers. The presence of the field can also be explained as due to a lack of 

inversion symmetry in the crystal; the bond between the two atoms is not purely covalent. 

Thus, there is a displacement of the electron cloud toward one bond direction of an atom. 

The result is a net negative charge on one face of the crystal and a net positive charge on 

the other, if the face is not neutral. Polar surfaces are a common phenomenon in many 

crystals. 
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  The two components to the polarization induced field in AlGaN/GaN are (i) 

spontaneous and   (ii) piezoelectric, which is due to mechanical strain at the interfaces 

from distortion of the crystal lattice. The distortion of the crystal lattice is due to a 

difference of lattice constants for GaN and AlxGal-x N. Figure 2.4 shows the [0001] 

gallium face. A charge sheet is then produced at the interface as a result of this strain. 

The two polarizations yield a net polarization P(x), described as 

P(x) = Ppz+ PSP = - [(3*2 x − 9 1 x2) ×10
−-6 

– 2*5 ×10
−6 

C x ⋅ cm2]        (2.4) 

 where Ppz = piezoelectric polarization, and PSP = spontaneous polarization.  As shown in 

Figure 2.3, charge balance requires that the polarization charges cancel out overall, i.e., 

the charges are not mobile, but just provide a field. The polarization is the cause of a very 

large 2DEG. The polarization along the [0001] axis of (Al) GaN is responsible for the 

band structure and charge distribution in these HEMT’s, as shown in Figure 2.4. The 

AlGaN surface with the adjacent Si3N4 layer creates an interface that will be considered 

in this work for how it changes the device. With the built-in electric field due to 

polarization induced charges in AlGaN/GaN, the charge at the interface allows for an 

electron density of approximately 1-2 x 1013 cm-2.  The structures studied in this research 

are AlGaN on wurzite GaN. Heterostructures in the wurzite nitride family have (0001) 

interfaces which bear a surface charge σ0 that results from the polarizations of the two 

alloys at the interface.  

       Piezoelectric polarization arises from mechanical stress and is negative if tensile, and 

positive if compressive. For tensile strain, the piezoelectric and spontaneous vectors are 

aligned parallel, and aligned anti-parallel if strain is compressive. The AlGaN total 
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polarization is larger than that of the GaN buffer. AlGaN and GaN layers both have 

negative spontaneous polarizations; the GaN buffer charge σp2 (in Figure 2.3) arises 

entirely from spontaneous polarization (Ambacher et al, 2000).   

The AlGaN crystal unit cell is slightly smaller than the GaN unit cell (AlGaN has 

a smaller lattice constant).  The AlGaN crystal stretches to match bonds with the GaN, 

which then changes the charge distribution in the AlGaN and gives rise to a piezoelectric 

polarization which points in the same direction as the spontaneous polarization.  This 

negative piezoelectric polarization vector points from the nitrogen atom towards the 

nearest neighbor Ga atom along the [0001] axis and is shown in Figure 2.4. The 

polarization is directed towards the bulk for Ga-faced crystals and towards the surface if 

N-faced. The change in polarization at the AlGaN/GaN interface results in a net positive 

charge layer.  This positive charge draws electrons from the GaN and the gate contact.   

Studies have shown that the 2DEG electron density is a strong function of the Al 

content of the AlGaN barrier, as well as its thickness (Kocan, 2003; Lenka and Panda, 

2011). In my dissertation, the surface states will play a very important role in the charge 

balance and source of 2DEG electrons. For this research, I have adopted the charge 

balance model, referenced throughout the field of device physics (Ibbetson et al, 2000).   
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Figure 2.4. Crystal structure of GaN and AlN. Crystal structure (left), and polarization 
induced bound sheet charge, piezoelectric and spontaneous polarization (right), of 
pseudomorphic AlN/GaN heterostructures. In Ga-face heterostructures, the 2DEG is 
located close to the lower AlGaN/GaN interface; in N-face heterostructures, it will lie 
close to the upper GaN/AlGaN interface. 
 

If there is an AlN layer, the spontaneous polarization at the AlGaN/GaN interface is 

given by 

                          PSP = PSP.AIN   + PSP.GaN (1-x),                                                     (2.5) 

where x is the aluminum content of the AlxGa(1-x)N barrier. The piezoelectric polarization 

is given by   

                      PPZ = 2* (a –a0/a)(e 31- e33 )*(C13/C33 ))                                     (2.6) 

Since the spontaneous charge in the AlGaN shown in Figure 2.4 is larger than that in the 

GaN, as well as the fact that it aligns in parallel with the piezoelectric component, σp1 is 
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much larger than σp2, and as a consequence there is a net positive interface charge (σp1 - 

σp2) that induces the 2DEG (σn) (Ambacher et al, 2000). 

Ambacher (Ambacher et al, 2000) defined a fixed polarization charge density due 

to the abrupt interface in a top/bottom AlGaN/GAN heterostructure layer as follows. 

                     σ(PPZ  + PSP)  =  P(bottom) –P(top) 

                                          = {PPZ (bottom) + PSP (bottom)}  -{ PPZ (top) + PSP (top)} 

                                         = {PsP (bottom) - PSP (top)} + {PPZ (bottom) ± PPZ (top)} 

                                        = σ (PPZ) + σ (PSP)                                                        (2.7) 

 If the polarization induced charge density is positive (+σ) in Figure 2.6, a 2DEG forms 

with a carrier concentration ns as a result of the electrons compensating for the 

polarization induced charge.  These charges (shown in Figure 2.3) can be related to their 

associated fields by applying Gauss’ law 

                                    ∇• E = ρ/ ε0            (2.8) 

to the hetero-interface region. 

                             ε2 E2 –ε1 E1 = σp1 – σp2 – σn          (2.9) 

Here, ρ  is the charge density, ε1 is the permittivity of the AlGaN barrier, ε2 is the 

permittivity of the buffer and  E2  and E1 are the corresponding  electric fields. The 

surface charge σs1 is positive, and the field outside the device is zero, so the surface 

charge is then given by: 

                                          σs1 = ε1E1 + σp1                    (2.10) 
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2.1.5.  Device Behavior 

A simplified typical AlGaN/GaN HEMT device is shown in Figure 2.5.  First, the 

expected behavior of a depletion mode or “always on” AlGaN/GaN HEMT, before 

passivation and without radiation damage is given. If it is” always on”,  there is always a 

current in the 2DEG unless a negative bias is applied to the gate, which then depletes the 

space charge region under the gate until pinch-off occurs. The sequence is shown in 

Figure 2.6 (a) and (b). GaN HEMT’s are not intentionally doped as are MESFETS, and 

the channel gets its electrons from the unintentional doping. There is less Coulomb 

scattering in the channel than in non-HEMT devices, due to the lack of ionized donors 

which can serve as scattering centers. With less scattering, a higher mobility is achieved. 

 

 

Figure 2.5 A simplified HEMT structure containing an AlGaN Schottky or donor contact 
layer, which serves as a source of electrons and a spacer layer.  
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Figure 2.6. Channel depletion (left). With more negative bias, space charge increases.  
Channel nears pinch off (right). 
 

Under operation, when a negative gate bias is applied, the Schottky layer becomes 

depleted as in Figure 2.6 (left).  In Figure 2.6 (right), with further gate biasing the 2DEG 

becomes depleted resulting in channel modulation and modulation of the carrier 

concentration. Gain and amplification occur until the channel is fully depleted (pinched 

off).  

 

2.1.6.  The Purpose and Effect of Passivation 

 As discussed in Chapter 1, the benefits of the use of Si3N4 as a passivation layer 

have been proven since 2000. It has been shown to greatly improve power performance. 

Since passivation reduces dc to rf dispersion, and it is well know that the cause of this is 

due to surface traps, one can conclude that the layer passivates surface donor traps. 

Passivation has even been credited with doubling output power density (Kalavagunta et 

al, 2008). The present research effort looks at the effect of varying the Si3N4 passivation 

for 1-MeV electron irradiations. 
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  According to Kordos et al. (Kordos et al, 2006) and Jeon and Lee (Jeon and Lee, 

2005), there is an increase in sheet-charge density with increased tensile stress imposed 

by Si3N4  and a slight decrease in mobility resulting in an increase of the channel 

conductivity. There is a reduction in the surface states.  Why the Si3N4 layer causes the 

mobility to decrease can be understood from both the positive field the layer causes and 

the additional scattering centers created from additional electrons and defect centers. 

Between the AlGaN and GaN layers is the 2DEG channel. One can ask how varying the 

Si3N4 layer affects the Hall measurement when Hall measurements are made through the 

2DEG and not across the surface. However, there is a strong consensus that the source of 

the 2DEG electrons is from the surface donors as shown in Equations 2.1and 2.2, and as 

discussed throughout this dissertation. 

Positive charges (creating a positive field) create surface carriers because the 

electrons are drawn towards them. So, on the surface, the number of carriers would 

increase and as a result there can be a new conduction channel there.  Consequently, the 

mobility in the AlGaN, a dielectric, would go down. The Hall resistance has strong a 

dependence on mobility, so if mobility goes down, there must be additional scattering 

causing an increase in resistance. 

 In addition to causing surface-state reduction, induced stress is another effect of 

passivation (Shealy et al, 2007). There are built in electric fields due to the polarization 

charges described in section 1.2.4 for nitride structures grown in the [0001] orientation 

(Kuang, 2008). Depending on the direction of the polarization vectors, there can be an 

increase or decrease in carriers. In section 2.2.3, the differences in the band diagram show 

a surface potential difference when there is a GaN cap as opposed to not having one.  The 
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effect of passivation that then affects the 2DEG carrier density of a device structure 

depends on the surface it is passivating.  While a discussion of the effect of the Al content 

is very important and many studies have shown that the electron density is strongly 

correlated to the Al content of the barrier as well as to a lesser degree the barrier 

thickness (Palmer, 2011) , these effects not be discussed in this dissertation.  

Along with the scattering mechanisms added by the passivation to explain the 

observed changes in Hall mobility, a defect commonly referred to as a K-center is 

invoked to explain how it passivates (Warren et al, 1991).    The typical defect population 

of Si3N4 layers is in the range of between 0.8 – 1 x 1018/cm3.  Warren et al. observed a K-

center, described as a Si dangling bond back-bonded to three nitrogen atoms. The Si 

dangling bond could exhibit a charge state of neutral, positive or negative. The fixed 

charge could be positive or negative. It can be postulated that, due to the high percentage of 

hydrogen used in the PECVD process, the Si3N4:H layer is passivating the dangling bonds at the 

interface.  Figure 2.7 is a diagram of the K-center dangling bond.  It is hypothesized that a K-

center dangling bond brings a positive field which passivates the surface donors.  The defect’s 

fixed charge state could be either positive or negative. 

 

 

Figure 2.7.  Depiction of Si3N4 K-center. 
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Passivation of nitrogen dangling bonds with hydrogen could lead to a net increase 

in fixed positive charge, due to the reduction of nitrogen dangling bond charge which can 

only exist in a negative or neutral state. This results in an increase in fixed positive 

charge.  According to Wright (Wright, 2008) in studies using Si3N4 as a passivant for 

silicon solar cells, only surface recombination through defect levels in the band gap can 

be altered by passivation. In those studies, it was shown that Si3N4 greatly decreases Nst, 

which is the concentration of defects at the Si surface by reducing Seff , the effective 

surface recombination velocity and thus could be an excellent passivant.  The effective 

surface recombination is defined as occurring for cases where  

                                                  Seff   < d/2W                                                        (2.11) 

is satisfied.  The parameter d is the diffusion constant of the AlGaN/GaN, and W is its 

thickness.   As will be shown in Chapter 5, with increasing Si3N4 thickness, the sheet 

concentration goes up and the mobility goes down. So perhaps the Si3N4 produces or 

enhances the surface donors (higher ns) but adds surface scattering centers (lower 

mobility μ).  This study will examine the effect of radiation and Si3N4 passivation 

concurrently. Some initial reported observations of the effects of Si3N4 are:  1) Si3N4 

passivation reduces the density of surface traps (Vertiachikh et al, 2002);  2) Positive 

charges located in the Si3N4 neutralize the effects of filled surface states (Prunty et al, 

2000); and, 3) Si3N4 stiffens the surface, reducing piezoelectric charge resulting from the 

gate bias-induced non-uniform strain in the AlGaN barrier layer (Hu et al, 2001).  
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2.2. Characterization Overview 

First, the transport mechanisms will be discussed as characterized by the Hall 

system. Then the physics that is involved in the photoluminescence spectra that provide 

information on the spatial localization of defects will be given. DLTS will be explained, 

as it further aides in trap analysis done in this research. A general analysis of defects and 

traps follow; they are a critical limiting factor in device behavior. The basic physics and 

algorithms that are used in the modeling and simulation in this research are given in the 

last section.  

 

2.2.1 . The Hall System  

In this research, van der Pauw Hall measurements were used to measure mobility, 

carrier density and resistivity before and after electron irradiations. Room temperature 

data as well as temperature-dependent Hall measurements show pre- and post-electron 

irradiation variation with temperature as well as with Si3N4 passivation thickness. The 

resistivity and Hall coefficient is usually obtained by using the van der Pauw method. 

The sample needs to be flat, homogeneous, and isotropic, have no holes, and have line 

electrodes on the periphery projecting to point contacts on the surface. Two possible 

electrode arrangements are shown in Figure 2.8. 
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Figure 2.8. Set up for Hall measurement showing van der Pauw arrangement (from NIST 

website). 

 

The four corner contacts of the sample need to be ohmic; the voltage drop across 

the contacts must be negligible compared with the voltage drop across the sample, so that 

they do not affect the Ig-Vg characteristics. The contacts need a metal work function less 

than the work function of an n-type semiconductor or greater than the work function of a 

p-type semiconductor (although few metal-semiconductor combinations satisfy this 

requirement). In practice, they can be composed of carriers yet have a negligible internal 

resistance Rc compared to that of the semiconductor, or a non-negligible Rc but obey 

Ohm’s law for current densities of interest (Borchi et al, 1999). 

From the measurement of the Hall coefficient RH, the Hall carrier concentration n, 

can be obtained via: 

                                                              RH = Ey/jx B = - 1/q n                                      (2.12) 
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where Ey/jx is the y-component of force which the electrons experience upon application 

of a magnetic field in the z direction.  q is the charge on the electron and n is the electron 

density. From the conductivity measurement, the mobility can also be deduced. This 

mobility is the Hall mobility μH (when electrons have the same magnitude of x-axis 

mobility, then μH = μ). The conductivity is given as: 

                                   σ = n q μn   + p q μp                                                                    (2.13) 

and                                      μH = RH σ                                                                           (2.14) 

Donor/acceptor energies and concentrations can typically be deduced from Hall-

effect models. Low-temperature Hall-effect measurements have been used to arrive at the 

surface region donor concentration by way of the surface conductivity.  The surface 

donors must then be further identified by correlating with some other analytical technique 

such as secondary ion mass spectroscopy (SIMS), positron emission spectroscopy, 

photoluminescence or DLTS. From the value obtained for µH and then n in equation 2.14, 

a charge-balance equation can be employed to determine donor and acceptor levels 

(Look, 1998): 

                       n + NA = ND/(n/ΦD)                                                                               (2.15) 

NA and ND are the acceptor and donor concentrations and ΦD is the donor density of 

states.  It will be shown that radiation changes the carrier concentration by creating 

acceptors or donors. 
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2.2.2.  Mobility and Scattering Mechanisms 

As an electron moves through an electric field, its momentum balance can be 

defined by 

                                            -q ε τc = mn υn                                                                               (2.16) 

where the subsequent electron drift velocity is       

                                            υn = -(-q τc/ mn ) ε = µn ε                                  (2.17)   

In these equations, ε is the electric field, τc is the carrier relaxation time or lifetime, mn is 

the electron mass, and µn is the electron velocity.  The mobility (µn) measurements 

obtained in this research from Hall system measurements are strongly scattering 

dependent. In the observations from the Hall measurements, the electron mobility will go 

down after irradiation because the 1-MeV electron irradiation, along with the addition of 

Si3N4 passivation, will create scattering centers. For the momentum relaxation lifetime 

associated with scattering τm, there is a power dependence on energy which must be 

considered for most scattering mechanisms (Wolfe et al, 1989): 

                                            τm = τoxr                         (2.18) 

where x is the kinetic energy normalized to units of the thermal energy kT, 

                   x =  𝜀−𝜀𝑐
𝑘𝑇

                                                                        (2.19) 

The momentum relaxation time is used in defining transport parameters in the presence 

of an electric field.   Conductivity mobility, obtained from σ = q µc n, is defined by 

scattering: 

µc = e<τm>/m*, and τ-1 = τ -1ac + τ -1pe + τ-1
po + τ-1 ii + τ-1 dis                                             (2.20)     
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The scattering components of the mobility µc from left to right are acoustic (ac), 

piezoelectric (pe), polar optical (po), ionized impurities (ii), and dislocation (dis). 

Additional scattering mechanisms that specifically contribute to the mobility of the 

structures in this study will be added and discussed as mobility is further defined. From 

here, the Hall carrier density, which is approximately equal to the sheet carrier density, 

can be calculated as: 

µc~ µH = e<τ2>/m*<τ>, and  µH =RH σ   --- nH =n/r = -1/e RH ~n               (2.21)                 

The above scattering mechanisms in equation 2.20 can be defined as some function of the 

scattering potential ΔU(r), which is a perturbation that the defect produces.  ΔU(r) has 

units of energy.  

  For scattering due to ionized impurities, τii, the interaction is electrical and can be 

described by the Coulomb energy (Wolfe et al, 1989): 

                        ΔU(r) = Zq2 /4πЄ(0)r                                                            (2.22)                             

which is treated as being approximately equal to a scattering potential:  

                                     ΔU(r) = 𝒉
𝟐

𝐦∗
  ( rB / r5)1/2                              (2.23) 

In eq. 2.22, Z is the charge state of an impurity or defect, q is the charge of the electron, 

Є(0) is the static permittivity of the material and r is the distance between the neutral 

impurity and the free carrier. In equation 2.23, rB is the ground state Bohr radius, and m* 

is the effective mass.  

Ionized impurities can be within or outside the quantum well (2DEG). Residual 

impurities in AlGaN/GaN, found on the GaN, have a density usually around 1015 cm -3.  
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With impurity scattering, due to the increase in screening effects with increasing carrier 

density, these affects become negligible compared to intrinsic scattering. The mobility µii 

due to ionized impurity scattering usually dominates at lower temperature in 

semiconductors because it is proportional to T3/2 (Look, 1998): 

                     µii =128 √2  𝜋1/2 ∈2(𝑘𝑇)3/2

𝑁𝐼𝑍2 𝑒3 𝑚∗1/2 [ln(1+𝑦)− 𝑦
1+𝑦]

      ,    y = 24Єm* (kT)2 /ℏ2 e2 n          (2.24) 

In Eq. 2.24, NI is the ionized impurity concentration. A screened Coulomb potential is 

used to treat the scattering caused by ionized impurities: 

                                                    ∆𝑉 = 𝑍𝑒2

4𝜋Є𝑟
𝑒𝜆𝐷
−𝑟                                                          (2.25) 

where Ze is the effective ionic charge, and 𝜆𝐷 is the Debye length (Wolfe et al, 1989). 

For acoustic and polar-optical phonons, τac ,  τpe   and τpo  can be described using 

scattering by deformation potentials or  the piezoelectric effect. Displacements of a chain 

of atoms from their Bravais lattice sites can be Longitudinal (LA) or transverse (TA).  

For the longitudinal component, the LA scattering potential is defined as (Wolfe et al, 

1989); 

                                      ΔU(r,t) =εA Δ • u(r,t)                                                               (2.26)                      

where u(r,t) is the displacement caused by an acoustic phonon in direction and time and 

εA is the deformation potential.  For piezoelectric scattering, the strain caused by LA 

phonons polarizes the ions in the crystal lattice and cause time- and space-varying 

electric fields according to 

                                  ΔU(r,t) = - q Ψ(r,t) and                                                               (2.27)                      

                                    Ψ(r,t) = - ∫ E(r,t) • dr                                         (2.28)     
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where Ψ(r,t) is the time- and space-varying wave function.   

For optical phonons, a wave depiction is shown in Figure 2.9 below.  The polar 

mode of scattering is due to the electric field resulting from the polarization of ions in 

their unit cell. Their occurrence is in crystals that have more than one atom in the unit 

cell. They are called "optical" because in ionic crystals they are excited easily by light 

(Look, 1998).  The polar-mode potential is usually described as: 

                                    ΔU(r,t) = - iqe*/ Ωε(∞)qs∫δ u(r,t) • dr                                      (2.29) 

where e* is the Born effective charge and ε is the materials permittivity.  Note that 

acceptor-type 

 

Figure 2.9. Polar modes for optical phonons. 

 

charged defects are created by radiation damage, which scatter more than donor type 

(which are neutral). This damage can be considered by the term τdis in the mobility 

equation 2.20. 

For acoustic phonon scattering, it is sufficient to consider the 2D electrons as 

interacting with a 3D phonon field. Acoustic, as well as optical phonons, interact with the 
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carriers through potentials of the following form, which connects the electron and phonon 

systems (Farvacque et al, 2002): 

Vph,k    = A(к,ω) (a к e  -i кr  + a+ к e  +i кr )                                             (2.30) 

к is the 3D phonon momentum and a and a+ are annihilation and creation operators.  The 

various functions A(к,ω) depend on the phonon-electron coupling mechanisms. From this 

equation and other functions (Farvacque et al, 2002), one finds that the more confined the 

electronic density is, then the larger the phonon scattering effect will be. 

    Carrier-carrier scattering, which is most significant at low temperature, is a two-

particle process interacting through the Coulomb potential. Starting with the scattering 

formula: 

1/τ ⁺⁻ = 2π/ħ ⁺⁻ ∑|<n,k | Vtot (r ⁺⁻ ω)|n̒κ̒>|^2(1-cos(k, κ̒))δ[ε n̒ (κ̒)-ε n (κ) ⁺⁻ħ ω]    

             (2.31) 

 and restricting the scattering process to quasi-elastic collisions (ω->0), there is now a 

term that coincides with the Episov Levinson formula (Norton, 2009) which, after an 

approximation, leads to larger and more realistic mobility values approximately equal to: 

     ~ (1- exp(-π n n̒))                                                                 (2.32) 

When carrier-carrier scattering is defect related, these defects, in addition to bringing the 

extra scattering, produce dangling bonds with energy levels that are different than those 

of the native material. They are localized states for which the Schrodinger-Poisson 

equation must be separately solved for. The break in the periodicity of the lattice results 

in a decrease in mobility and conductivity.  
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2.2.3.   Hall Mobility and Carrier Density as a Function of Device Structure 

   In this research, two structures are studied; AlGaN/AlN/GaN and 

GaN/AlGaN/GaN. Since it will be shown that the strongest model for the source of the 

2DEG electrons is the one indicating the AlGaN surface states, then whatever interfaces 

with that surface will affect the carrier concentration and the mobility of the carriers. So 

that would be either Si3N4 for the first structure or GaN for the second structure.  

    Structural parameters affect the 2DEG, and hence all other device metrics. An 

AlN layer reduces the alloy scattering by acting as a barrier between the 2DEG wave 

function and the AlGaN. This will be shown in the 2DEG wave function models in 

Chapter 5.  The AlN layer adds to polarization, which then raises energy bands up 

relative to the Fermi level.  If charges from Si3N4 act in the same direction, then the 

conduction band will be raised and there will be more transfer of charge and electrons 

into the localized 2DEG. A discussion on how an AlN interlayer affects AlGaN/GaN 

HEMT structures follows. 

  Figure 2.10 below shows the difference a thin AlN layer will cause in changing 

the effective ΔEc (Meneghinni, 2008). 
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Figure 2.10: Band diagram comparisons for structure with an AlN interlayer on the left 
and without the interlayer on the right. The horizontal axis is thickness. Note the change 
in ΔEc (from Shen, 2004). 
 

 

The samples in this study have a 1-nm AlN layer, and so the conduction band offset ΔEc 

or potential drop  will be about 0.9 eV (Meneghinni, 2008), which then gives   

     ΔEc,eff = ΔEc,AlGaN  + 𝑞
2            (𝜎𝐴𝑙𝑁    −𝑛𝑠    )

𝜀∗𝜀0
∗ 𝑡𝐴𝑙𝑁  = 1.4 eV                       (2.33) 

This value is about double the offset of a typical HEMT. For the structure on the right in 

Figure 2.10, just AlGaN/GaN without an interlayer or cap, the 2DEG density can be 

written as: 

                               ns = 
σ𝐴𝑙𝐺𝑎𝑁 ∗𝑡𝐴𝑙𝐺𝑎𝑁−

𝜀 𝜀0  𝜑𝐵   
𝑞 + 

𝜀0𝜀 (  Δ𝐸𝑐,𝐴𝑙𝐺𝑎𝑁    )
𝑞2

𝑡𝐴𝑙𝐺𝑎𝑁 +  𝑑0
                           (2.34) 

For the structure on the left, with an AlN interlayer, the increase in 2DEG density can be 

written as: 
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                         ns,AlGaN/AlN = 
σ𝐴𝑙𝐺𝑎𝑁 ∗𝑡𝐴𝑙𝐺𝑎𝑁+σ𝐴𝑙𝑁 ∗𝑡𝐴𝑙𝑁    −𝜀 𝜀0  𝜑𝐵   

𝑞 + 
𝜀0𝜀 (  Δ𝐸𝑐,𝐴𝑙𝐺𝑎𝑁    )

𝑞2

𝑡𝐴𝑙𝐺𝑎𝑁  +  𝑡𝐴𝑙𝑁   +  𝑑0
    

                                 = 
σ𝐴𝑙𝐺𝑎𝑁 ∗𝑡𝐴𝑙𝐺𝑎𝑁−    𝜀 𝜀0  𝜑𝐵   

𝑞 + 
𝜀0𝜀 (  Δ𝐸;

𝑐,𝑒𝑓𝑓  )

𝑞2

𝑡𝐴𝑙𝐺𝑎𝑁  +  𝑡𝐴𝑙𝑁   +  𝑑0
                            (2.35) 

The net polarization charges and thickness of the AlGaN and AlN layers 

are  σ𝐴𝑙𝐺𝑎𝑁, σ𝐴𝑙𝑁 , 𝑡𝐴𝑙𝐺𝑎𝑁  , 𝑡𝐴𝑙𝑁  ; and Δ𝐸𝑐,𝐴𝑙𝐺𝑎𝑁    is the conduction band discontinuity. 

There is a change in the energy band slope as compared to a sample without an interlayer 

(as on the right). Adding the effective conduction band discontinuity term to ns gives a 

structure with AlN having a higher ns. 

    For structures with GaN caps, there is reduced dispersion without additional 

passivation. With a cap, the distance is increased between the channel and the surface, 

and there is less surface potential fluctuation. Also, a GaN cap serves as a surface charge 

control layer, reducing the effect of polarization charge. It also screens the 2DEG from 

surface traps that lead to current collapse.  Later, it will be shown that the GaN/AlGaN 

and AlGaN/GaN interfaces have anti-parallel polarization vectors. Figure 2.11 is a band 

diagram of a GaN cap structure. 
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Figure 2.11. Band diagram of a GaN/AlGaN/GaN structure with a 7 nm GaN cap (from 
Shen, 2004). 
      For the GaN cap structure, the 2DEG sheet charge density in the channel goes 

down as compared to a structure with no GaN cap. The reason is that the polarization 

charges at the two interfaces, GaN/AlGaN and AlGaN/GaN, cancel each other out. The 

effect of the cap turns out to be similar to applying a negative bias, particularly with 

thicker caps. The cap field points to the GaN/AlGaN interface. This decrease in carrier 

density can be described in terms of the surface potential, 𝜑𝑠: 

                                 ns = 
σ𝐴𝑙𝐺𝑎𝑁 ∗𝑡2+𝑡1−

𝜀 𝜀0  𝜑𝐵𝑠 
𝑞

𝑡1 +𝑡2  𝑑0
                                               (2.36) 

where t1 is the GaN cap thickness and t2 is the AlGaN thickness. The distance between 

the center of the 2DEG wave function and the AlGaN/GaN interface is d0. This explains 

the decrease in carrier density in terms of the cap thickness and the higher surface 

potential. I will show in subsequent chapters that a high mobility results for structures 

with the GaN cap. This cannot be directly compared with the AlGaN/AlN/GaN structure, 

since the structures had little in common. However, general comparisons between 
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AlGaN/AlN/GaN and GaN/AlGaN/AlN/GaN by others have shown there is still a 

decrease in carrier density with the addition of a GaN layer and an increase in mobility, 

due to perhaps less carrier-carrier scattering.  

 

2.2.4.  Carrier Density 

Sheet carrier density, often used synonymously with the term 2DEG, is a 

fundamental device metric.  In the previous subsection, it was defined in terms of the 

surface potential for a structure with an AlN interlayer and then GaN cap, clearly 

indicating that the concentration of carriers in the 2DEG is device-structure dependent. It 

can alternatively be defined as the sum over all states or Ni concentrations in each sub-

band in the quantum well: 

           Ns = ∑𝑁𝑖
𝑚∗ 𝑘𝐵 𝑇
𝜋ђ2

 In(1+ exp([Ef –Ei]/kBT))                                           (2.37) 

where m* is the effective mass of the electron, Ef is the Fermi energy, Ei is the energy 

band level, and T is temperature. The term in parenthesis is the Fermi-Dirac distribution 

function, or F(E). For a semiconductor, the density of electrons is related to the density of 

available states and the probability that each of these states is occupied. The distribution 

term, for electrons with localized levels like those for impurities or defects can be written 

as a generalized distribution function (Sze and Ng, 2007): 

F(E) = 1
1+ K exp([Ef –Ei]/kBT)

                                                        (2.38)  

 with K being the factor that accounts for degeneracy. K= 1 is for band electrons, while 

K= ½ is for donor electrons and K = 4 is for acceptor electrons assuming two degenerate 
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upper valence bands, common for most direct gap III-V materials. The slight splitting 

which occurs in GaN is ignored. 

   The relationship between the previously discussed carrier mobility and carrier 

density in AlGaN/GaN quantum wells is that the former strongly decreases with 

increased carrier density. This is because with increased carriers, the combination of 

phonon, carrier –carrier and interface defect scattering bring down the mobility.  This is 

shown in Figure 2.12. 
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Figure 2.12: Temperature-dependent Hall data from an unpassivated sample showing that 
as carrier density (x-axis) increases, mobility decreases (y-axis).  
 

2.2.5.  Conductivity    

Hall conductivity is an important metric for device performance. It is the product 

of the mobility and carrier density discussed above: 



42 
 

                      σ = q µ ns                                                                      (2.39) 

It is taken from the Hall resistivity measurements, for which it is generally the 

mathematical inverse.  For the samples in this study, it is mobility dominated. However, 

when the conductivity degrades, it can be concluded that either carriers are lost or 

mobility is going down due to scattering, or both, as in the case with 1-MeV electron 

irradiation. 

 

2.3. Photoluminescence Physics 

    With photoluminescence (PL), one can determine certain impurities in 

semiconductors. It is well suited for shallow level impurities, but can also be applied to 

deep-levels. It can provide simultaneous information on many types of impurities in a 

sample. Low-temperature measurements are desirable to obtain the fullest spectroscopic 

information by minimizing thermally activated non-radiative recombination processes 

and thermal line broadening. The thermal distribution of carriers excited into a band 

contributes a width of ~ kT/2 to an emission line originating in that band, so it is 

necessary to cool the sample to reduce the width.  Thermal energy kT/2 is 0.8 meV at T= 

4.2 K. Room temperature measurements are often used to provide spatial PL maps of 

doping and trap densities.  Laser excitation (quasi-monochromatic) is typically used in 

PL experiments, but broad-band light sources, such as lamps can also be used. 

 

 2.3.1. The Photoluminescence Peak 

    Samples are excited with a laser as the energy source: 

 hγ > EG                                                                        (2.40) 
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where hγ is the photon energy and EG is the band gap energy, thereby generating 

electron-hole pairs by one of several mechanisms. Photons are emitted in the case of 

radiative recombination, but not in the case of bulk or surface non- radiative 

recombinations. Some of the photons may be reabsorbed in the sample, of reflected at the 

exit surface provided they are directed at the surface within the critical angle. When a 

photon generates an e-h pair, Coulombic attraction can lead to the formation of excitons 

(electrons and holes remain bound to each other in a hydrogen–like state). This excited 

state is called a free exciton (FE). Its energy is slightly less than the band gap energy 

required to create a separated e-h pair. An exciton can move through the crystal, but 

because it is a bound e-h pair, photoconductivity changes do not occur.  When the FE is 

bound (localized) to an existing defect, the corresponding energy state is referred to as a 

bound exciton (BE) prior to the recombination (annihilation) of the exciton and is slightly 

lower than the FE recombination energy.  For example, the hole in the FE can be 

attracted to a neutral donor (has an “extra” electron). There is a similar scenario for BEs 

recombining in the vicinity of neutral acceptors.  The observation of PL emission 

attributed to FE recombination is indicative of having material that is sufficiently pure 

and free of non-radiative centers.  In many cases, not all of the collapsed exciton energy 

is re-emitted as light. Phonon can be emitted and often PL spectra show many orders of 

phonon replicas.   

Bound exciton recombination dominates over FE recombination in less pure 

material.  Another recombination channel is referred to as an electron-acceptor transition.  

A free electron can recombine with a hole on a neutral acceptor.  Also, a free hole can 

recombine with the electron in a neutral donor.  A final common recombination involving 



44 
 

impurities is when an electron on a neutral donor recombines with a hole on a neutral 

acceptor (referred to as D-A recombination). Its emission line has an energy modified by 

Columbic interaction between the donors and acceptors. 

In the case of band-to-band recombination (exciton binding energy not included), 

the role of phonons can be understood through energy conservation: 

           hγ = Ec – Ev ± ђΩ                                             (2.41) 

 where ђΩ is the energy of the phonon. Because the 3rd term, the phonon energy, is 

energetically more costly when positive (+) and requires having a population of phonons, 

it is more likely to have phonon emission (- term), rather than phonon absorption (+ 

term).  For conservation of momentum, we have: 

                                       kv +q = kc                                                         (2.42) 

where q is the phonon momentum and kv and kc are the electron momenta in the valence 

and conduction bands.  

 

2.3.1.1.  DX Centers 

     A classical DX center (donor next to an “X” unknown) is sometimes called a 

shallow- deep transition. For the materials studied here, the normal DX is a shallow level 

that has become deep due to alloying (for example, with Al). Doping does not cause this 

effect.  “DX –like” means it can just be a common donor (impurity defect, etc.), but in 

this work, these centers can also transfer over their electrons to the 2DEG region to give 

1013 electrons.  If there are not sufficient numbers of donors or DX centers, then the 

electrons have to come from somewhere else; the surface being that other possibility. 
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   Nitride semiconductors are easy to dope n-type; in fact, they often exhibit 

unintentional n-type conductivity. In the past, it was believed that nitrogen vacancies 

were the source of unintended doping. However, it is now a consensus that unintentional 

impurities, such as oxygen or silicon, are most likely the explanation for the observed n-

type conductivity.  Oxygen exhibits a very interesting behavior in nitrides. In GaN, it 

behaves as a shallow acceptor, but when the band gap is increased (either under 

hydrostatic pressure, or by alloying with Al), the oxygen undergoes a transition to a deep 

center (DX center). Oxygen also can behave as a deep acceptor, i.e., it becomes a 

compensating center.   

     Oxygen becomes a deep level in AlGaN when the Al concentration exceeds about 

30% (Kuang, 2008).  Silicon does not undergo the DX transition. Silicon should therefore 

act as a shallow donor in AlGaN up to very high Al concentrations.  Note, however, that 

oxygen tends to be unintentionally incorporated in compound semiconductors with high 

Al content; and any oxygen that is present in AlGaN with more than 30% Al will act as a 

compensating center for electrons. 

  

2.3.1.2 Excitons 

   This section describes exciton quasi-energy states and extends the discussion in 

Section 2.3.1.  When a photon is absorbed by an electron in a solid, and the energy of the 

photon is equal to the amount of energy between the state in which the electron is 

currently located and some other unoccupied state, a transition between states can occur.  

This is known as the Bohr condition. With electrons in semiconductors, the electrons 

absorbing photons with energies larger than the band-gap energy are easily promoted 
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from the valence band into the conduction band, because of the near-continuum of empty 

states available.  When an electron is excited into a vacant space in the conducting band, 

the electron leaves behind a hole. This hole behaves very much like an electron of 

positive charge. Once such an excitation occurs, the first possibility is that the two 

particles drift apart, the electron in one direction and the hole in another. The other thing 

that can happen is the formation of an exciton. This metastable dual-particle system is 

known as a FE. Because you essentially have a negatively charged particle in close 

proximity to a positively charged particle, the two can trap each other and form 

something that looks very much like a hydrogen atom, with a binding energy of a few 

meV, which reduces the  excited state energy. The exciton is a then a hydrogenically 

bound electron-hole pair. It has bound energy levels just like those in the hydrogen atom. 

    This exciton can itself migrate or, after some amount of time, the electron will 

spontaneously recombine with the hole, emitting light in the process. The energy of the 

luminescence will generally be less than the material’s band-gap energy, and because 

most semiconductors have band-gaps in the visible region of the electromagnetic 

spectrum, some of the light is usually occurring in the visible region as well. Figure 2.13 

is a diagram illustrating these possibilities. 
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Figure 2.13. Depictions of some of the light-driven processes in a semiconductor.  (A) 
Photons from an ambient light source are absorbed by an electron. The electron (red) is 
excited into the conducting band, leaving behind a hole (blue).  (B) The electron and hole 
can move independently of each other (charge migration).  If many excitations happen 
and electrons can be made to flow in one direction, and holes in another, the material can 
be the basis of a solar cell.  (C) Alternatively, the electron and hole can entrap each other, 
forming a hydrogenic bound state known as an exciton. (D) The exciton may itself 
migrate through the material, or (E) the electron and hole can recombine, in many cases 
emitting a photon.  Photons emitted by excitons in an ideal material are nearly 
monochromatic. 

 
Figure 2.14. Hydrogen atom showing its Bohr radius. 
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In Figure 2.14, when in its lowest energy state, the electron orbiting the hydrogen 

nucleus (a proton) has a roughly spherically symmetric probability distribution. That is, 

for a given distance from the nucleus, the electron has an equal probability of being found 

in any direction from the nucleus. The most likely distance at which the electron can be 

found is known as the Bohr radius, which is equal to about 0.05 nm.   

    An exciton radius, shown in Figure 2.15, is like a metastable hydrogen atom.  It 

has orbitals and states just like a hydrogen atom, and it also has a Bohr radius (known 

here as the exciton-Bohr radius, alpha) which is the most likely distance the electron will 

be away from the hole. This distance is usually quite a bit larger than that of a hydrogen 

atom, because the exciton is not formed over “free space”. That is, there are other 

electrons in the background that change the electrostatic forces which determine what the 

“optimal distance”. 

 

Figure 2.15. The exciton–Bohr radius is depicted. 
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Figure 2.16. Allowed energy states vs. box size for confined system. 

 

 

Basically, the exciton-Bohr radius is scaled by a constant known as the dielectric 

scaling factor  kappa, which is the ratio of the material’s dielectric response to that of free 

space. The value of kappa depends on the material and typically ranges from 3-12 for 

common semiconductors. In the case of atoms/molecules, we find that the 

electron/particle is only allowed to have certain energy values, and its probabilistic 

position is defined by orbitals, described by wave-functions in the quantum mechanical 

sense. As illustrated in Figure 2.16, as energy levels get closer together as the box size 

increases, this means that light emitted from an excited electron in a big box is lower 

energy – or more red colored (longer wavelengths) – than an excited electron in a small 

box. So, it is for the larger exciton radius as opposed to hydrogen.  
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 2.3.2. The Yellow Line Emission 

    As previously mentioned, unintentional doping in AlGaN/GaN is due to shallow 

donors, and PL results on the samples in this study imply that these donors are oxygen or 

silicon (Neugebauer and Van de Walle, 1996; Mattila and Nieminen, 1997; Lee et al, 

1997; Kwon et al, 2000). There are many models invoking defect complexes and 

substitutional sites, but Colton (Colton, 2000) believes unintentional silicon is replacing 

nitrogen (SiN) or oxygen replaces nitrogen (ON). Based on the effective mass of GaN, the 

hydrogenic donor binding energy was calculated to be Ed = 33 meV, comparable to the 

ionization energies of for SiGa = 30.8 meV and ON = 32.4 meV. The exciton Bohr radius α 

was calculated to be 0.529 Å (m0/m*)ε = 23 Å . There is a large amount of evidence 

(Colton, 2000) that supports a donor-acceptor pair (DAP) transition. The resulting 

emitted photon from the recombination changes equation 2.41 to:  

 ђ ω = Eg – EA – ED  +e2 / ( εR)                                                (2.43) 

  Here Eg is the band gap energy of ~3.47, and EA and ED are the acceptor and donor 

binding energies, respectively. In the last term, R is the distance between the donor and 

acceptor which defines the Coulombic attraction between the donor and acceptor charge 

states. To be noted is that the VGA, an acceptor defect, involved in emission in the yellow 

spectral region (thus Yellow Line, or YL transition), has the lowest formation energy of 

any native defects in n-GaN.  A donor acceptor pair transition occurring with PL defined 

by equation 2.43 is represented below.  
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 Figure 2.17. Donor-acceptor pair transition occurring in PL. 

   

2.3.3. The Blue Line  

 Emision in the blue region of the visible spectrum is believed to be due to a 

transition involving a complex with Mg.  The Mg acceptor on a gallium site (MgGA) is 

believed to have a hydrogenic binding energy of about 200 meV, with some reports 

indicating a value up to 250 meV (Kwon et al, 2000). Calculating again as done for the 

donor site above, but instead for a hole and using the effective hole mass, the acceptor 

Bohr radius is estimated to be 4 Å.  As for the YL, there are a number of models that 

define the BL transition occurring. The one that best fits the PL spectra in this research is 

the MgGA – VN transition (Reshchikov and Markoc, 2005). 

 

2.4.  Deep Level Transient Spectroscopy 

  Deep Level Transient Spectroscopy (DLTS) can be used to determine carrier 

concentration, activation energy and capture cross section (Look, 2006). DLTS is a 

measure of capacitance transients, defined as: 

                                           ΔC = C (t1) – C (t2).                                      (2.44) 
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Figure 2.18.  Change in capacitance ΔC with time, t.  

 

With a reference frequency, obtained from voltage-pulse repeating rates, this then 

is multiplied by a constant to get a “rate window”. As the temperature is swept from t1 to 

t as in Figure 2.18, once the emission rate of carriers from a defect in the sample equals 

the rate window at Tpeak, a peak is obtained from the spectrum as shown in Figure 2.19.  

 

 

Figure 2.19.  Formation of DLTS peak. 
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The emission rate constant en can be expressed as: 

                                en (Tpeak) = In (t2/t1)  
𝑡2−𝑡1

                                   (2.45) 

The measurement is performed on semiconductor devices that possess a voltage-

modulatable space-charge layer. Note that Schottky diodes reveal only majority carrier 

traps. Given this, a reverse-biased Schottky barrier on the sample is subjected to a 

forward-bias pulse in order to flood the depletion region of the device with electrons, 

temporarily filling the traps in the region. Once the original reverse bias is reestablished, 

the temporary filled electrons (or holes) will be re-emitted.   

 From a set of the emission rate and the corresponding temperature pairs, one can 

make an Arrhenius plot, which provides a defect activation energy for the thermal 

emission process. The Arrhenius plot is the In(en/T2) as a function of 1000/T. Usually this 

energy (sometimes called the defect energy level) together with the plot intercept value 

are defect parameters used for its identification or analysis. On samples with low free 

carrier density, conductance transients have also been used for a DLTS analysis (Look, 

2001). 

 

2.5. Defects, Donors, and Traps 

     Impurities can be shallow or deep. Shallow impurities are impurities which 

require little energy to become ionized - typically around kT/2 or less. Deep impurities 

require energies larger than the thermal energy to ionize so that only a fraction of the 

impurities present in the semiconductor contribute to free carriers. If a deep impurity is 

greater than five times the thermal energy away from either band edge, it is very unlikely 
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to ionize. These impurities are traps because they can be act as recombination centers in 

which electrons and holes fall and annihilate each other. 

In addition to impurities, bulk traps can be due to lattice mismatches (interface 

states), dangling bonds (surface), or various types of damage by radiation.  Traps are 

studied because they affect and limit the performance of devices. A main objective of this 

research is to examine radiation-induced displacement which leads to damage-induced 

degradation in AlGaN/GaN HEMTs. It has been shown previously (Kalavagunta et al, 

2008), that carrier removal due to traps in the unintentionally doped AlGaN layers change 

the space charge in these structures with a subsequent decrease in the 2DEG density, 

which in turn reduces the drain current in the device. Bulk traps in the GaN channel 

region and other regions of the device degrade the 2DEG density (by removing carriers) 

as well as the mobility in the device. This, in turn, degrades the performance of the 

device. While not addressed in this study, mobility degradation is closely coupled with 

the self-heating in the device. The donor-like surface traps, that will be described 

throughout this study, and which reside in the gate-drain and source-gate access regions, 

cause the majority of the gate-lag in the device. These traps at the AlGaN/Si3N4 surface 

are decreased away from the surface. Gate-lag increases with increased bulk traps 

(Kalavagunta et al, 2008), and contribute to the reduction of the 2DEG density. 

   Many studies have attempted to identify the traps in AlGaN/GaN bulk as well as 

surfaces and interfaces (Binari et al, 2002; Khan et al, 1994; Vetury et al, 2001). One 

method of studying and characterizing traps is through capacitance measurements. DLTS, 

which is a transient capacitance measurement, can identify deep level defects. Look 

(Look, 2001) has identified fitting parameters to be used in conjunction with Hall carrier 
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density data, starting with the donor-acceptor charge balance equation given in equation 

2.5. For an n-type, donor-dominant sample:   

                                                     n + NA=   𝑁𝐷
1+ 𝑛

∅𝐷

                            (2.46) 

where ∅𝐷  = (g0/g1) Nc’exp(αD/k)T3/2 exp(-ED0/kT).  The ratio g0/g1  is a degeneracy 

factor (=1/2 for an s state), Nc’ =2(2πmn*k)3/2 /h3 
, h = Planck’s constant, ED is the donor 

energy, k = Boltzmann constant, and  ED0 and αD  are defined by :  ED = ED0  - αDT 

(showing a linear temperature dependence of ED). These, along with ND for donors and 

NA for acceptors, would also be the fitting parameters. If more than one donor state exists 

within a few kT of the Fermi energy, then equivalent terms are added on the right hand 

side.  More information on the fitting steps is given by Look (Look, 1998). The fitted 

donor and acceptor concentrations were 6.7 x1015 and 1.7 x 1015 cm-3, respectively. VGA 

is often the dominant acceptor in undoped GaN. After 1.0-MeV irradiation, both the 

number of acceptors and donors increase by an amount that is ~ 1 cm-3 by each 

bombarding electron per cm2 , which gives a production rate of ~1 cm-1. The vacancy is 

thought to be a N vacancy VN , and the acceptor is thought to be a N interstitial NI. The 

donor activation energy ED is .06 eV, making VN a shallow donor (Look, 2001). 

Theory suggests that the VN defect has a level in the conduction band (CB) which 

when occupied, autoionizes into a hydrogenic configuration, i.e., with an energy about 

30-40 meV below the conduction band.  The donor and acceptor created in 1-MeV 

irradiations are strongly believed to be donor and acceptor components of the nitrogen 

Frenkel pair, that is, the N vacancy and the N interstitial. The model given by Look 

confirms the expected donor nature of VN and demonstrates the rare appearance of an 
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(NI) as an acceptor. Both N and Ga atoms are displaced by 1 MeV irradiation, as will be 

addressed in Chapters 3, 5 and 7.  

 

2.6.  The Physics and Numerical Methods Behind Simulations 

      Both analytical models were done in Mathcad and self-consistent models were 

done in Nextnano. The analytical models in Mathcad did calculations of the depth of the 

1 MeV electrons based on the Bethe Bloche algorithm and the production rate of damage 

done in AlGaN/GaN by 1 MeV electrons. Additionally, Casino Monte Carlo simulations 

were done to see where the locus of damage was.  

 

2.6.1. Schrodinger Poisson: Self-consistent Solution of Schrodinger’s equation 

     An electron characterized by its wave function Ψ(r), and spin orientation s, must 

satisfy the time-independent Schrodinger equation. The electron can be considered as a 

plane wave with wave vector 𝐾 and de Broglie wavelength, λ =2𝜋
𝐾

 .   A method for 

incorporating impurities and radiation effects into the Schrodinger Poisson models is 

given here. If the electron is traveling in a force free area where it does not interact with 

other electrons, the Hamiltonian contains only a kinetic energy term, with the momentum 

operator, P = -ħ2 /2m, and Schrödinger’s equation is: 

                                  - ħ2 /2m Ψ(r) + V(r) Ψ(r) = E Ψ(r)                              (2.47) 

In a solid, the effective mass form of Schrodinger’s equation is: 

ħ2

2
𝛿

     𝛿𝑧
 ( 1
𝑚∗ 

𝛿𝜓
𝛿𝑧

) + ħ
2

2𝑚∗ (𝑘𝑥 
2 + 𝑘𝑦 

2  )𝜓𝑖 +ΔEc +eΦ−eΦxc) + ac (𝛾𝑥𝑥 + 𝛾𝑦𝑦 +𝛾𝑧𝑧 )𝜓𝑖 =Ei(k) 𝜓    

  (2.48) 
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where  kx and ky are the electron wave numbers, and m* is the effective mass.  Herein a 

set of eigenenergies Ei and their corresponding wavefunctions (𝛾𝑥𝑥 +  𝛾𝑦𝑦 +𝛾𝑧𝑧 )𝜓𝑖  can 

be modeled. With knowledge of the allowable eigenenergies and their spatial 

distributions within that eigenstate (|ψi (x)|2), then the electron density ni cm-2 can be 

calculated from: 

                ni = 𝑚
∗ 𝑘𝐵 𝑇
𝜋ħ2

 ln(1+ exp([Ef –Ei]/kBT))                                                 (2.49) 

The above Schrodinger equations represent the unperturbed lattice. The Hamiltonian is 

simply:  

                                  H = ħ2 /2m + V(r).                                                     (2.50) 

For a lattice perturbed by an impurity, ϕ:  

                  H = ħ2 /2m + V(r) – ϕ                                           (2.51) 

So then for a lattice perturbed by irradiation, a term for the potential for displacement 

(acceptor or defect) is included. The potential is Coulomb-type. Assuming there is a fixed 

voltage across the device and starting with:   

V = IR, I = V/R.                                          (2.52) 

Ohm’s law can now be adjusted to account for the passivation thickness and the electron 

irradiation. 

V= V(x,h) + Ve (x,h)                                                    (2.53) 

where h= Si3N4 thickness, and the Ve in the second term is the electron irradiated 

potential. We know that V changes with h(x,h) or the radiation perturbation.  With 

irradiation, the lattice is perturbed and its distribution is changed because of 
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displacements. So for a lattice perturbed by an impurity, the Hamiltonian can be now 

written as: 

                                    H = h2 /2m ∇2 + V(x)- 𝑍𝑞
2

4𝜋Є𝑟
   = H - 𝑍𝑞

2

4𝜋Є𝑟
                                   (2.54) 

with Poisson’s equation being:   d2 φ (x)/ dx2 = ρ/Є0. 

 Since the systems being modeled contain more than one electron, the potential 

energy of each electron is both a function of the conduction band edges and the electron-

electron interactions, and the right hand side of Possion’s equation can be written as: 

                            q/ Є0 [p(x) –n(x) +ND(x)- NA(x) + NT(x)].                             (2.55)                                      

Here, the terms ND(x) and NA(x) account for the donor and acceptor doping 

concentrations and NT(x) is the radiation-induced trap concentration.  Poisson-

Schrödinger solvers are implemented in the Nextnano software. With Nextnano, the 

quantum well energy states were numerically determined, as well as the mobility 

scattering mechanisms. The electron density ni in Equations 2.51 and 2.52 are nonlinearly 

coupled until both ni and Ec satisfy Schrodinger’s equation. 

   Figure 2.20  is a flow chart which summarizes the processes used in the Nextnano 

program. By solving Schrodinger’s and Poisson’s equations simultaneously, the electron 

wave function and density is obtained along with electric field, band diagram position 

information, and surface and electrostatic potentials. By varying the input parameters of 

structure and doping density, then the trap density, changes in scattering mechanisms, 

changes in the quantum mechanical description of the structure, as well as the mobility 

and carrier density can all be fitted and compared with experimental results. 
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Figure 2.20.  Nextnano simulations used to compare mobility and sheet carrier densities 
with the observed experimental results from the HEMT epi-stack structures follow this 
flow chart. 
  

2.6.2.   CASINO 

 CASINO is a Monte Carlo-based modeling tool that can simulate the electron 

radiation trajectory, depth and energy distributions, as well as radiation intensity. Casino 

models will be shown in later chapters to aide in analyzing the damage due to electron 

radiation. The models for the paths of the electrons assume both elastic and inelastic 

scattering. The inelastic interactions include secondary electrons, backscattered electrons, 

and continuum x-ray radiation (bremsstrahlung) results. Figure 2.12 is a screen shot of 

the electron distribution with 50 nm of passivation on an AlGaN/AlN/GaN sample. 

Figure 2.22 is an x-ray intensity plot as a function of depth for nitrogen for the same 
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sample.  The continuum radiation intensity I emitted by the decelerating particle 

(acceleration a, decelerating force is F, and tparticle mass m) is (Warren et al, 1991): 

      I ~ a2  ~ (F/m)2                     (2.56) 

 

 

 
 
Figure 2.21. Casino’s Monte-Carlo simulation of electron paths through a HEMT sample 
going through the Si3N4 passivation. The backscattered electrons are in red, while the 
absorbed electrons are in blue. The incident electrons were 1 keV and there were 200 
electron trajectories.  
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Figure 2.22.  X-ray intensity for  Nitrogen in a HEMT sample with 1-keV electrons and 
200 electrons trajectories.  
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III.  Overview of 1-MeV Electron Irradiation Effects 

 

3.1. Introduction 

Chapter 2 covered the basic physics needed to understand the results and 

conclusions in this dissertation. When electron radiation interacts with matter, in 

particular semiconductors, there is an additional set of physics that must be understood. 

In this chapter, I address 1 MeV electron irradiation, as radiation effects are specific to 

the source of the radiation as well as the energy and dose, for any given material and 

structure. Silicon nitride passivation is used on HEMTs, but not much is understood of 

how various thicknesses will perform once deployed in space-borne high radiation 

environments. Devices need to be not just shielded from radiation damage but they need 

to remain operational in these environments. The studies in this research were undertaken 

to determine the effect of the variation of Si3N4 buffer layers combined with electron 

radiation on AlGaN/GaN heterostructures. Experimentally, the irradiation was applied in 

order to increase the electron trapping at the interface, thus providing an enhanced 

interface quality to examine the defects. In this chapter, models useful in understanding 

radiation of 1-MeV electrons will be examined.  Electron irradiation is known to cause 

radiation-induced device degradation, and it has been shown previously that 1-MeV 

irradiation produces point defects and creates acceptors (Look et al, 1997; Look, 2001). 

Two studies will be presented along with their findings with high energy radiation. 

It has also been proven (Polenta et al, 2000) that the dominant 1-MeV radiation 

induced vacancy defect in GaN is the nitrogen vacancy (VN). Theory suggests that the VN 

defect has a level in the conduction band (CB) which when occupied, auto ionizes into a 
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hydrogenic configuration with an energy about 30-40 meV below the conduction band.  

The donors and acceptors created in 1 MeV-irradiation are believed to be donor and 

acceptor components of the N-Frenkel pair, that is, the N vacancy and the N interstitial. 

The model given by Look confirms the expected donor nature of VN and demonstrates 

the rare appearance of an (NI) as an acceptor (Jackson, 1999). 

This chapter will briefly give an overview of previous 1-MeV radiation research. 

Then the physics of high energy radiation effects will be discussed, along with models for 

displacement (NIEL) and ionization damage. A quick synopsis of the other forms of 

radiation will be given, followed by a short discussion on some of the well-known 

previous work that studied the effects of 1 MeV irradiation. 

 

3.2. MeV Electron Radiation Effects 

When electron radiation impacts AlGaN and GaN, what happens depends on the 

stopping power and thickness of the sample (Jackson, 1999). This research will focus on 

Non Ionizing Energy Loss (NIEL), which describes the energy loss from incident 

particles as a result of displacement of an atomic species. Ionization is thought to occur 

also with 1-MeV irradiation, but it is difficult to decouple from displacement damage loss 

and it is believed to not be persistent in AlGaN/GaN HEMT structures. The rate at which 

these particles lose energy anywhere along their tracks, or the electron stopping power, 

has two components (Jackson, 1999; Agullo-Lopez, 1988; Polenta et al, 2000).  Agullo-

Lopez and Jackson detail both collisional and radiative stopping power. What Jackson 

calls collisional is more appropriately called ionization loss.  Collisional loss typically 

means that an entire atom is displaced. 
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Both collision and radiative stopping powers are average values over the 

distribution of atoms in a material. The radiative component generated as energy loss per 

unit path length, is characterized by the emission of Bremsstrahlung radiation in the 

electric field of the atomic nucleus or of the atomic electrons (McKelvey, 1962). This is 

indicated by a characteristic length X0 which is the mean distance though which the 

electron loses all but 1/e of its energy by Bremsstrahlung.  According to Tsai (Tsai et al, 

1966), it is: 

                         1/X0 = 4αr2  Na /A{Z2 [Lrad  -f(Z)] + ZL’rad }                                           (3.1) 

Prior to being absorbed, the energy from Bremsstrahlung radiation travels far 

from the particle track (McKelvey, 1962).  With high energy electrons, the predominant 

energy loss in matter is by Bremsstrahlung. At lower energies, the primary loss is through 

ionization as well as other processes. Scattering is considered ionization when the energy 

loss per collision is below 0.255 MeV (Agullo-Lopez el al, 1988).  Note that in the case 

of Bremsstrahlung, one must also consider the possibility of further ionization or 

displacement by the emitted radiation.  It is usually small, but it is necessary to check to 

see if this has occurred. 

In general, a fast charged particle incident on matter makes collisions with atomic 

electrons and nuclei through the Coulomb force (Agullo-Lopez et al, 1988). When 

entering the GaN/AlGaN crystal lattice, fast incident electrons collide with lattice atoms, 

if they do not pass completely through the material as described above. Collision 

stopping power’s energy loss can be through an elastic or inelastic interaction. The 

inelastic interactions are Coulombic, and are characterized by a coupling of the motions 

of the affected targets to the vibrational structure of the material. These collisions can 
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result in ionization, excitation or atomic displacements. The latter elastic collisions result 

in defects due to displacement damage by knocking the Ga, N, or Al atoms out of their 

lattice positions. According to Polenta (Polenta et al, 2000), 1-MeV electrons create VN 

related centers that have a thermal activation energy of 0.06 eV (Goodman et al, 2000).  

Both shallow donors and acceptors can be produced at an equal rate with 0.42 MeV 

electrons (Look et al, 1997).  It has been shown that for AlGaN and GaN, electron 

stopping power models indicate ionization and excitation dominate, as the majority of the 

energy deposited in the material remains close to the incident electron tracks. 

Collisional energy transfer varies with the atom’s atomic mass. Massive nuclei 

absorb very little energy but because of their greater charge, may cause deflection of the 

incident particle. Gallium atoms have a lower binding energy than nitrogen in GaN. 

Atomic electrons take up appreciable amounts of energy from the incident electron beam 

without causing significant deflection (Agullo-Lopez et al, 1988).  More energy is 

transferred to the less massive N atom resulting in displacements. These are also 

characterized as point defects such as vacancies and interstitials. High-energy electrons 

have a propensity for producing point defects (Agullo-Lopez et al, 1988; Look et al, 

1997). DLTS studies of electron irradiation show at least three defect levels (Fang et al, 

2011).  These defects create scattering centers and thus decrease the net mobility if these 

scattered electrons contribute to electron-electron scattering in the 2DEG. Apart from 

this, the scattering is Coulombic and occurs outside the 2DEG region.  

Studies (Hu et al, 2007) show for GaN lattice atoms, high energy electrons (~1 

MeV) should be able to produce displacement damage resulting in line defects. Line 

defects are not expected from primary knock-on atoms, for such cascades require ~290 
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eV for N and 41 eV for Gallium (Look et al, 2005).  Gate leakage was also observed, 

which increases due to trap-assisted tunneling through the AlGaN layer as a result of 

radiation induced trap creation. The increase in drain current either resulted from the 

increase in carrier concentration in the 2DEG, or the carrier concentration remained 

constant and the electron mean velocity increased within the 2DEG.  

It is important to know how far the radiation will travel in the material, and this 

can be determined by the stopping power of the material. The Bethe-Bloch equation is 

used to determine the stopping power and, from it, the displacements per volume for GaN 

(McKelvey, 1962): 

         -dE/dx = 2πNa r2 me c2 ρ Zz2 /A  β2 [In(2me γ2 ν2 Wmax /I2)  -2 β2-σ-2C/Z]          (3.2) 

where 
β = v / c;  
v velocity of the particle 
E energy of the particle 
x distance travelled by the particle 
c speed of light 

 particle charge 
e charge of the electron 
me rest mass of the electron 
n electron density of the target 
I mean excitation potential of the target 

 permittivity of free space  
 

For the high energy limit, after some manipulation and using β ~ 1, the above equation 

can be reduced to: 

            -dE/dx ≈ [2 In ( 2me𝑐2

𝐼𝑒
 ) + 3 In ϒ-1.95]                                                  (3.3)    
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where me is the electron mass, c is the speed of light and Ie is Mc2, where M is the ion 

mass. By integrating Equation 3.3, the maximum energy transferred from the electron to 

the atom is given by: 

                          Em = 2𝐸(𝐸+ 2me𝑐2)
𝑀𝑐2

                                                                     (3.4) 

The above equation is equal to the energy needed for an atomic displacement, so Em = Ed. 

The values of E to produce Frenkel pairs are 0.18 MeV for nitrogen (for a VN -NI Frenkel 

pair) and E= 0. 51 MeV for gallium (for a VGA- GaI Frenkel pair) (Van Vechten, 1988). 

Look has predicted (Look et al, 1997) a shallow donor and trap production rate of 1 cm-1 

of thickness. In Chapter 5, the production rate for the above Frenkel pairs as calculated 

by a defect production algorithm based on the Bethe Bloch equation (equations 3.2 and 

3.3).   

The damage from high energy electrons has been generalized in theory (Jackson, 

1999) and Agullo-Lopez (Agullo-Lopez et al, 1988). The damage can be summarized to 

be: dislocation damage creating acceptors and donors, positive (or negative) threshold 

voltage shifts, and gate leakage. When traps are introduced, there is a reduction in 

conductivity, mobility and minority carrier lifetime. So when electron radiation passes 

through an AlGaN/GaN structure, the fast electron damage can be summarized by the 

type of defects produced and why. 

A fast charged particle incident on matter makes collisions with atomic electrons 

and nuclei. When entering the crystal lattice, it collides with lattice electrons. The loss of 

energy by the incident particle occurs almost entirely in collisions with electrons. For 

incident electrons, both energy loss and scattering occur in collisions with atomic 

electrons, so the path is much less straight .After a short distance, electrons tend to 
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diffuse into the material, rather than go up in a rectilinear path. Defects are created, and 

can be acceptorlike. These defects create scattering centers and thus decrease the net 

mobility. The scattering is Coulombic. There can be a positive threshold voltage shift due 

to the trapping effects in the gate area. The defects are thought to be deep acceptor like, 

and the mobility degradation caused by Coulomb scattering in defects mostly outside of 

the 2DEG region. There is irradiation gate leakage, and both donors and acceptors are 

created by the radiation. At 0.45 MeV, a N vacancy (VN) is created, but at 1 MeV a 

Frenkel pair consisting of a nitrogen vacancy and interstitial can be created, as well as a 

gallium vacancy.  

For energy transfer in a Coulomb collision between an incident particle and a 

stationary free electron, any of the following can occur: (a) for energetic collisions, the 

binding of the electron in the atom can be neglected; the electron can be considered free 

and initially at rest in the laboratory. (b) The collision is elastic and Coulomb scattering is 

in the rest frame of incident particle. This scattering can be in the AlGaN and measured 

with Hall mobility measurements. (c) Gate leakage occurs if the collision results in 

damage that creates hopping sites. This will be examined with Ig-Vg measurements in 

Chapter 6.  The elastic as well as inelastic scattering is modeled in CASINO, and the 

individual scattering mechanisms are modeled in Nextnano. The number of defects 

created by primary electrons is modeled using a defect production algorithm along with 

the electron trajectory. 

Incident 1-MeV electrons create damage, both displacement and ionization. For 

this dissertation, the damage of interest is displacement damage. However ionization 

could be occurring but it is difficult to decouple from displacement damage and it 
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typically does not persist in AlGaN/GaN HEMTs.  Starting with the concept that high 

energy electrons hit an AlGaN\GaN target, I have modeled energy vs. depth for both the 

atomic constituents of AlGaN and GaN and Si3N4. Based upon both experimental 

observations and theoretical calculations, some hypothetical assumptions can be made: a) 

the incident electron energy is high enough to cause displacements in the lattice of 

nitrogen, aluminum or gallium (if passivated, then also in silicon): this energy of the 

incident electron Ee needs to be such Ee > Einteraction + EB > Ethres  where Einteraction  is the 

energy of interaction and EB is the binding energy of the electron in the target atom, 

which, when combined, needs to be able to cause a displacement and be greater than 

Ethres.  b) The maximum energy transferred occurs at normal incidence. Also, because this 

is 1-MeV electrons, the effects are relativistic.  

From here, the underlying principles or basic physics involved are:  the 

conservation of kinetic energy, the conservation or momentum, and the equations of 

energy momentum balance. There is a minimum energy ED that will displace the atom 

from the quantum well (the well here is defined by the place where the atom sits in the 

lattice with an upper bound given by up the point where it is out of that spot and in an 

inter-lattice position), but the displacement is temporary because the energy imparted to 

the atom from the bombarding electron causes instability such as vibration so that the 

atoms tends to fall back into the well (Figure 3.1).  The actual energy needed to produce a 

displacement is much larger. The calculated value for displacement energy ED is now 

known to be a lower limit. This data does not fit the experimentally obtained values, so 

there are missing assumptions or physics not incorporated into the model.  The adequacy 
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of the model is determined by the accuracy with which the hypothetical assumption (or 

the hypothesis) accounts for the observed data. Solving for displacement energy: 

Ed = 2 (me/M) Ethres /me c2 (Ethres + 2me c2) = Ed (eV)= Et(Et + 1.022x106)/470 x 106 A    

                (3.5) 

 

 
Figure 3.1. Particles scattered out of the quantum well to nearby layers of AlGaN or GaN. 

 

The threshold energy Ethres necessary to produce an atomic displacement is then just 

given by the condition T max=Em = Ed, where Ed is the displacement. For nitrogen, Ed = 

32.5 eV and for gallium Ed = 24.3 eV are predicted. The corresponding values obtained 

experimentally are much greater: Ed = 66 eV for nitrogen and Ed = 38 eV for gallium. 

The higher observed energies than the predicted ED are explained by the fact that 

displacement of an atom needs additional energy in order for the displacement to not be 

pulled back into the quantum well by the very strong polarization induced field at the 

AlGaN/GaN interface, thus higher energies are needed. 

The displacement energy values can also be determined using a computer model 

as follows:  using a production rate = σD x F= σD x n14 and from there σd = (π b’2 

/4)[((Tmax/ Ed )-1)) – β2 In(Tmax/ Ed ) + παβ{2[(Tmax/ Ed -1)1/2  -1]- In(Tmax/ Ed ), where α = 
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Z/137, β = v/c, b = 2Ze2/me v2   and b’ = b(1- β2 )1/2 . The results of this model will be 

shown in Chapter 5 in the discussion of the defect algorithm results.  This can now be 

used to calculate the number of displacements for non-uniform damage. By integrating                      

                                        dn/dt = No σd ne ve     ,                                                             (3.6) 

n can be obtained to yield the amount of atomic displacements. No is the number of atoms 

per unit volume, ne is the number of electrons crossing the unit area in 1 sec in the beam, 

and ve is the incident electron velocity. 

Another method used for under 1-MeV electron irradiation is based on values for 

GaN and adapted from the Mott-McKelvey-Feshback algorithm) (Lu et al, 2012) : 

nGA/cm3 =(No( molecules/mole) * ρ(gm/cm3) *  1/ A(gm/mole)= No ρ/A = 

molecules/mole = 6.02204 x 1023 x 5.6/81.36 = 4.14  x 1022   

is the number of Ga and N per cm3.  A production rate of defects is obtained using 

σD(cm2) x n(cm-3) =(4.36 x 10-24) x (4.14  x 1022) = 0.18 /cm for nitrogen.  Again, we are 

starting with the concept that high energy electrons hit an AlGaN/GaN crystal lattice 

target.  Assumptions are then made that: ionizing radiation deposits a small amount of 

radiation via the incident electrons. The particle is Rutherford scattered due to the 

Coulomb repulsion between the incident electron and the atomic conduction band 

electron. This energy is absorbed and then deflected which results in the ejection of a 

valence band electron to the conduction band (an e-h pair is created).  If ionizing energy 

Ei > EB , the radiation can remove an electron from the atom (referred to as atomic 

ionization).  The incident electron then travels through the material and can continue to 

cause ionization. The atom from which the electron was removed may recoil with 

sufficient ED to become displaced from the lattice, also resulting in ionization.  
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 The number of e-h pairs generated in a semiconductor via radiation absorption is 

material dependent (band gap), and dependent upon the thickness of the material and the 

type of radiation. When ionization occurs, there must be conservation of momentum. In 

the ionization process, if fully absorbed, incident electrons lose an amount of energy 

equal to the kinetic energy of the electrons plus the binding energy EB used to free the 

electron from the atom.  Ionization is generally characterized as inelastic; there can be 

excitation and displacement also.  Energy momentum balance for electrons is first 

described: 

                             (3.7) 

 

 

Qmax is the maximum imparted momentum by the incident electron and M is the mass of 

the target atom or particle and V is their velocity. E is the incident energy and m is the 

mass of the electron.  Once ionization occurs, the e–h generation is defined by: 

e-h generation:  
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Ionization due to 1-MeV electrons can be summarized as: (1) incident electrons 

interacting with a lattice atom scatters an electron. For nitrogen the energy is 14.8 eV 

needed to ionize. Once ionization occurs, an energy greater than 3 times the energy gap 
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binding EB of the atom. This process repeats as the electrons continue to move through 

the material until recombination occurs.  

The amount of energy deposited into ionization can be determined from the 

stopping power dE/dX in equation 3.2. To determine the number of atoms experiencing 

ionization per second, the range R of the particle in the material needs to be determined. 

From there, the IP = number of ion pairs/cm3–sec:  (electron energy/e-h generation 

energy for material)* J* 1/R. One then finds the number density for the material: NGa or 

NN . The fraction of ions experiencing ionization per second is IP/N. Ne is the number of 

electrons generated and can also be obtained from ionization tables and added to original 

number N0 to get the total number of ions after radiation:  

              Ntot,e  = Ne + N0                                                                              (3.9) 

The reality is that it has proven to be difficult to decouple effects of ionization and 

displacement in AlGaN\GaN HEMTs.  

 

3.3. Previous 1-MeV Electron Irradiation Studies on AlGaN/GaN HEMTs 

Since space-borne electronics are subject to various species of radiation damage, I 

will briefly mention some previous studies.  First, studies of radiation damage from 

neutrons, protons, electrons, or gamma rays are summarized.  Then, prior studies on 1- 

MeV electron or higher irradiations will be given.   

Cobalt-60 gamma radiation effects (Atkas, 2004) showed gamma radiation did 

not degrade the large signal transient response for the device. Neutron radiation 

interactions can trigger nuclear transformations and be very radioactive. Protons are 

heavy and carry charge, so therefore are not easily deflected and can travel far compared 
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to other particles.  Other reports (White et al, 2003,Karmarkar et al, 2005, Kalavagunta, 

2009, Hwang et al, 2014) have focused on radiation effects on electronics. In his 

dissertation (Kalavagunta, 2009), Kalavagunta studied the role of traps in RF and DC 

device degradation. Neutron irradiation studies have been published (McClory, 2008; Lu 

et al, 2012; Petrosky et al, 2009; Polyakov et al, 2008; Govarkov et al, 2006).  Lower 

energy electron irradiation studies have also been done (McClory, 2008; Jarzen, 2005; 

Sattler, 2004; Moran, 2009; Green, 2003).  Lower energy electrons have a greater 

probability of interacting with their target because of their slower speed. Among those 

making significant contributions to understanding 1-MeV and higher energy electron 

irradiation are Fang (Fang et al, 2010), Polenta (Polenta et al, 2000) and D. C. Look 

(Look et al, 1997), who are referenced throughout this dissertation. The following is a 

summary of Fang and Look’s study (Fang et al, 2009) on the effect of 1-MeV electron 

irradiation on AlGaN/GaN HEMT Schottky barriers, which has many parallels to the 

research in this dissertation.  

 

Figure 3.2. Effect of 1-MeV electrons on I-V-T characteristics (1-MeV electrons with 
dose of 5x1015 cm-2 at room temperature (from Fang et al., 2009) 
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Before electron irradiation, Figure 3.2 shows that the current in forward bias IF 

can be described by thermionic emission. However, the reverse bias current IR shows less 

T-dependence, indicating there is tunneling conduction. After electron irradiation, there is 

a significant increase of both forward IF and reverse IR. The increase is more than two 

orders at the reverse bias current of VR= -5 V. Since there is not a strong temperature 

dependence, but the post radiation IF and IR show strong electric-field dependence, this 

also is an indicator of the dominancy of tunneling conduction. 

  

 

Figure 3.3. Effect of 1-MeV electrons on C-V-T characteristics (from Fang et al., 2009). 
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well as with decreasing temperature. At T<300 K, the rate of change of Vth is lower 

before irradiation (∆Vth= -0.28 mV/oC), than after (∆Vth= -0.55 mV/oC). The electron 

irradiation causes a negative shift of the Vth’s, with a shift of -0.16 V at 300 K. Similar 

threshold voltage shifts will be shown in the studies in this research. In their research, the 

electron irradiation did not change the 2DEG carrier concentration, which is 7.5 x 1019 

cm-3 at 300 K (determined from C-V). 

 

 

Figure 3.4: Effect of 0.5-MeV electrons on deep traps in a SBD with a large Schottky 
contact (φ=200 µm; from Fang et al., 2009). 
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negatively going DLTS signal is related to a hole-like trap at high temperatures by these 

same authors (Fang et al, 2009). 

 

 

Figure 3.5. Three Schottky barrier diodes were compared: irradiated and non-irradiated 
AlGaN/GaN Schottky barrier diodes, along with an irradiated GaN-Schottky barrier 
diode (Fang et al, 2009). 
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(0.13 eV) traps are also induced in the irradiated GaN-SBD. For the irradiated 

AlGaN/GaN SBD, E is in the buffer region and Ee is in the 2DEG region.  

The conclusion of this prior study (Fang et al, 2010) is that irradiation causes a 

significant increase in leakage current, which is dominated by tunneling. A negative shift 

of threshold voltage (Vth) in the pinch-off region is observed. The radiation creates deep 

traps Ae (~1.1 eV) and A2 (1.2 eV) and Ee (0.09 eV). In turn, these irradiation-induced 

traps can account for the increase of leakage currents and shift of Vth. As compared to 

traps A2 and E in irradiated GaN, traps Ae and Ee in irradiated AlGaN/GaN show 

differences in activation energy and electron-capture behavior. 

The next study is based on a technical report (Georgievich, 2008) and on the 

research and papers by A.Y. Polyakov et al. (Polyakov et al, 2008).  Results concluded 

that the radiation hardness of the AlN/GaN HEMTs is about an order of magnitude higher 

than for AlGaN/GaN HEMTs for high energy electron irradiation. The reason for such 

difference in radiation hardness most likely comes from the lower thickness of the AlN 

barrier and correspondingly the lower density of radiation defects in the region near the 

barrier GaN interface. 

After irradiation with a dose of 5 × 1015 cm-2, the capacitance in the depletion 

region was decreased to the values close to parasitic capacitance for both structures 

indicating that the buffer was rendered insulating. That means that the electron removal 

rate was close to 0.4-0.6 cm-1. A similar removal rate was observed for electron irradiated 

n-GaN films grown by MOCVD. The carrier removal rate is similar in MOCVD and 

MBE material. Measurements of the buffer resistivity on the AlGaN/GaN sample with 

the barrier removed by etching showed that the sheet resistivity was about 1010 ohms per 
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square after irradiation with a dose of 1016 cm-2 electrons. The resistivity showed an 

activation energy of 0.6 eV; i.e., the activation energy was that of the main compensating 

center in GaN. That means that all shallow donors that were undercompensated in the 

initial samples were compensated by irradiation. They also showed that the main 

compensating agent in electron irradiated n-GaN films is the Ec-1 eV acceptor related to 

nitrogen interstitials Ni. Optical DLTS (or ODLTS) spectra measured before and after 

irradiation on an AlN/GaN HEMT structure (Figure 3.6) showed a negative broad hole 

traps band due to dislocations which are modulated by positive peaks from electron traps 

E1, E2, and E3. Their corresponding respective activation energies are 0.2 eV, 0.25 eV, 

and 0.6 eV. These are the electron traps dominant in the GaN buffer before irradiation. 

After irradiation they saw additionally an electron trap E4 with the activation energy 1 eV 

and the Arrhenius signature very similar to the Ni deep acceptors produced in n-GaN 

(Georgievich, 2008). They claimed that electron irradiation of AlGaN/GaN HEMTs can 

be used to “correct” the technology when it fails to produce semi-insulating buffers, but 

only in cases when the concentration of residual donors is not much higher than 1015 cm-

3. For higher concentrations, the buffer compensation can still be achieved as they 

confirmed in measurements on a second HEMT structure, but it required doses in excess 

of 9 × 1016 cm-2 and the amount of increase in the channel conductivity accompanying 

this  buffer compensation was unacceptable. 
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Figure. 3.6. ODLTS spectra measured in the AlN/GaN sample before (solid line) and 
after (dashed line) irradiation with 1016 cm-2 10-MeV electrons (from Georgievich, 2008). 
 

The result of electron irradiation on C-V characteristics of the MOCVD HEMT is 

shown in Figure 3.7. The capacitance value in depletion was initially high, about 400 pF, 

and then gradually decreased with dose until, at 9 × 1016 cm-2, it became close to 10 pF. 

This indicates full compensation of the buffer. Since the residual donor concentration in 

this structure was estimated as (3-5) × 1016 cm-3, these data suggest a carrier removal rate 

of 0.3-0.6 cm-1. It was concluded that the average electron removal rate was about 0.5 

cm-1, irrespective of the growth method, and for a concentration range (1-50) × 1015 cm-3 

for various dopings. This group studied 2DEG characteristics of variously grown 

AlGaN/GaN HEMT structures, and demonstrated a strong increase in 2DEG 

concentration when switching from AlGaN to AlN barriers. Analysis of C-V data from 

MOCVD grown and MBE grown AlGaN/GaN HEMT structures allowed them to 
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determine which had insulating and which had conducting buffers. This analysis was 

corroborated by conductivity and C-V measurements on respective buffer structures 

exposed by the barrier removal technique involving etching in hot phosphoric acid. 
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Figure. 3.7. Cg-Vg characteristics measured on the AlGaN/GaN MOCVD sample HEMT 
before and after irradiation with electron doses of 1014, 1015, 1.5×1016, 4.5×1016, 9×1016 
cm-2  (from Georgievich, 2008). 

 
In this same study, admittance spectra measurements and DLTS/ODLTS 

measurements performed on AlGaN/GaN HEMT structures showed an important role of 

electron traps with activation energy 0.2, 0.25, 0.6, 0.9 eV in these structures. In 

particular these traps were at least partly responsible for the low temperature shift of C-V 

characteristics to lower negative bias upon cooling at large reverse bias. This was clearly 

demonstrated by application of the specially developed “reverse DLTS” technique which 

is similar to ordinary DLTS, but involves pulsing of the structure from lower to higher 
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reverse bias. The general idea of the method is that the hysteresis occurs due to tunneling 

of electrons from the Schottky contact into the barrier or the buffer. The charge captured 

on these traps needs to be removed by an activation process. Thus, temperature scans in a 

“reverse DLTS” technique allow one to determine the energy and capture cross section of 

the traps involved. Their detailed studies strongly suggest that in MBE-grown structures, 

the traps in question are located in the GaN buffer. 

The previous report showed irradiation also caused increases in the GaN buffer 

resistivity. Like other studies in this area previously discussed, with the electron 

irradiated structures, the effect is explained by introduction of point defects.  The defects 

are predominantly the nitrogen-interstitial-related Ec-1 eV acceptor centers. With this 

study, the electron irradiation caused a shift in the threshold voltage in both directions, 

first towards more negative values, then towards more positive values. They did not gain 

complete understanding of the first process, but attributed it to the increase of the positive 

space charge in the AlGaN barrier. The positive threshold voltage shift was explained as 

due to increased compensation of conductivity in AlGaN barriers. 

Irradiation of n-AlGaN/GaN heterostructures with electrons had little effect on the 

density of electrons in the accumulation region of the structure, but decreased the electron 

concentration in the n-AlGaN film with a rate much lower than for n-GaN. It was found 

in p-AlGaN that the main effect of the electron irradiation was the creation of deep 

electron traps near 1.2-1.3 eV as measured from the conduction band edge. These traps 

are most likely located in the AlGaN/GaN interface region (2DEG). There is a bias 

dependence of DLTS peak amplitude and a similarity of this trap energy and signature in 

electron irradiated n-GaN, n-AlxGa1-xN/GaN (for x=0.10 and 0.25). 
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In the next chapter, I will describe the experimental techniques used in this 

research. Then, chapters with the results of the commonly identified radiation induced 

defects and traps will be given.  Results are always structure and material dependent, so 

very small nanoscale differences can lead to easily detected macroscopic changes. 
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IV.  Experimental Equipment and Procedures 

 

4.1. Introduction 

This chapter describes the experimental setups and equipment used to do the 

research for this dissertation. Chapter 2 gave the underpinning to understand what the 

experiments and equipment described in this chapter will produce the results and analysis 

in Chapters 5 through 7.  The underlying physics behind all the measurements mimicking 

radiation effects was given in Chapter 3. 

 

4.2. Device Preparation 

For the HEMT epi-stack structures, wafers of undoped AlGaN/AlN/GaN and  

GaN/AlGaN/GaN were grown using MOCVD on 4H-SiC substrates with the dimensions 

shown in Table 4.1. Wafer IQ13 had a GaN cap and a 19.7 nm AlGaN layer. Wafers  

IQ15 and IQ16 had no cap layers, but an AlN interlayer and an 18-nm AlGaN layer. 

Samples were diced to 0.5 × 0.5 cm using a diamond saw. To examine the impact of 

silicon nitride passivation on AlGaN/GaN heterojunction devices, the effects of the 

passivation layer thickness was investigated at various thicknesses (0, 20, 50, and 120 

nm) on bare epilayer AlGaN/GaN structures. The electron energy of the beam was 1.0 

MeV and the fluence was 1016 cm-2 for the electron irradiations, which were done at 

Wright State University. The Wright State radiation lab was easily accessible to do the 

electron irradiations. Previous studies have been done with electron irradiation on RF 

GaN HEMTs to characterize their degradation. However, the unique aspects of my 
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approach over these others is: None of these previous studies exclusively included the 

role of the Si3N4 thickness in the formation of the surface states, either intrinsically or 

following irradiation. 

 

Table 4.1. Dimensions of AlGaN/GaN device layers. * is for wafer IQ13. 
 
Barrier  AlGaN 18 nm     /      19.7 nm* 

Passivation cap GaN*                            2 nm* 

Interlayer AlN 1 nm 

Buffer GaN 1700 nm 

 

Three mask levels were used to fabricate various planar metallic structures, 

including Ohmic and Schottky contacts, on the top (AlGaN) layer in order to facilitate 

Hall-effect, C-V, and DLTS measurements, as shown in Figure 4.1. The top-level 

structure labeled "layout" has 3 layers: 11 is ohmic; 12 is Schottky; 30 is nitride protect. 

The Ohmic stack consisted of Ti/Al/Ni/Au, and the Schottky stack, Ni/Au. The Schottky 

was 300 µm in diameter.  The sample surfaces were cleaned using standard isopropyl-

acetone solutions.  To create good Ohmic contacts, the wafer was subjected to a rapid 

thermal anneal at 850 oC in a nitrogen ambient. The silicon nitride layer was deposited by 

PECVD. When this process was complete, the wafer was diced into 5-mm x 5-mm pieces 

(Fig. 4.2) using a diamond saw for Hall-effect and DLTS measurements.  Figure 4.3 

shows the structure of the device used in this research. 
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Ohmic                  Schottky        Passivation 

 

 

 
Figure 4.1. Three stage mask design. Pane 1 in the upper left is the 2” wafer overview. 
The upper right is the Schottky cell layer, the lower left is the ohmic cell layer, and the 
bottom right is the combination of the individual layers.   
 

Combination 
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Figure 4.2.  The layout of the Si3N4 deposition per wafer quadrant and a sample mounted 
for irradiation on the right. 
 

 

Table 4.2.  Hall and PL Experimental Overview. 

Surface Fabrication B:3 stage mask designed- metal stack for 
ohmic contacts = Ti-Ni-AL-Au 

Anneal RTA 850 oC  nitrogen 

PL laser HeCd laser (325 nm) covered 3550 
angstroms to 7450 angstroms; Post 
radiation- 266 nm laser 

Hall system characterization Pre-radiation- Post radiation Mobility, carrier 
concentration, resistivity 

Si3N4 Thickness 0, 20, 50, or 120 nm 
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Figure 4.3. Device structures for GaN/AlGaN/GaN and AlGaN/AlN/GaN. 
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4.3. Design of Experiment 

For the Hall system study of transport mechanisms, a 2 factor of design of 

experiment was conducted wherein: 

• The  radiation energy and fluence were held constant for all irradiations; 

• The Si3N4 thickness and temperature were varied per device structure. 

Tables for the setups for the Hall characterization experiments are in the Appendix. Other 

tables will be given throughout the dissertation that summarize experimental results. For 

the Hall characterization of AlGaN/AlN/GaN, eight sample sets were run.  

 

4.4. Electron Irradiation Experiments 

The 1.0-MeV electron irradiations summarized in this chapter were done to mimic 

the environment in which AlGaN/GaN HEMTs are subject to in space applications. I 

studied the displacement damage as well as leakage current changes. Figure 4.4 is a 

picture of the Van der Graff at Wright State University used in the experiments. The 

electron irradiations per structure are summarized in the tables in the Appendix.  The 

energy is held stable to less than 1%.  Samples were affixed mechanically to a water-

cooled end-station. Pre-irradiation characterization indicated that the fluence varied no 

more than 5% over the sample. The beam current was ~2.0 µA and dosimetry was 

performed using a calibrated Brookhaven Instruments 1000c current integrator.  The 

irradiations were made with the sample under a vacuum of ~ 1 x 10-6 Torr.    
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Figure 4.4.  High Voltage Engineering Van de Graff accelerator at Wright State 
University (Dayton, OH). 
 

4.5. Characterization Experiments 

The methodology for characterization was divided into three main areas: (1) Hall 

system electron transport characterization, (2) gate (Schottky) electrical measurements 

for leakage current studies, capacitance and DLTS, and (3) optical characterization using 

PL for spatial localization of defects. Other experiments such as FTIR and AFM were 

performed but are not included in this dissertation. Readers are encouraged to contact the 

author for further information on the additional work. 
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4.5.1. Hall Characterization 

As mentioned above, wafers of undoped AlGaN/GaN were grown using MOCVD 

on 4H-SiC substrates. The surface fabrication consisted of a Si3N4 layer deposited on 

AlGaN with a metal stack configuration for the Ohmic contacts consisting of Ti-Ni-Al-

Au. The surface fabrication was  applied using a 3-stage mask shown in Figures 4.1 and 

4.2. These contacts were required for Hall system characterization, as well as for gate 

(Schottky) measurements.  To establish repeatability and sample consistency, 24 device 

structures were electron irradiated (eighteen passivated and six unpassivated) using a 

Dynamitron electron accelerator at Wright State University. 

The layer structure of the device prior to Si3N4 layer deposition is given above. 

The temperature-dependent Hall measurements were accomplished using a Lakeshore 

7507 automated system having a temperature range 12 - 800 K; a resistance range 10-3 to 

1013 Ω; and, a magnetic-field range 0 - 10 kG. An Accent HL5500 automated system with 

probes for on-wafer device measurements was used for room temperature measurements.  

   

4.5.2. Electrical Characterization for Gate (Schottky) Leakage Current and 
Capacitance.  

The same wafer preparation described above for Hall system measurements was 

used for Schottky measurements, but extra grounding and mounting was done for 

samples being tested on the systems shown in Figures 4.5 and 4.6. Since these structures 

are not transistors that have a gate, electrical measurements were done by making Ohmic 

contact assignments as a “source” or “drain”.  Then, a reverse bias was applied to the 

Schottky metal stack to deplete the space charge area for the n type depletion mode  
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Figure 4.5.  Setup used in for Ig-Vg, Cg-Vg and DLTS studies. 

 

structures used.  Capacitance voltage (Cg-Vg) and current-voltage (Ig-Vg) measurements 

were done at 1 MHz for a temperatures between 100 and 400 K.  All other experimental 

factors were held constant. 

 

4.5.3. Deep Level Transient Spectroscopy 

In order to perform DLTS measurements on a sample, it was first measured 

before hand to see if there was enough rectification to get DLTS trap information both 

before and after irradiation. Immediately after each pulse with the DLTS measurement, 

the rf capacitance changes by ΔC, whereby ΔC is negative for majority carrier traps and 
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positive for minority carrier traps.  If a Schottky diode is used, or if in a pn junction the 

reverse bias is only reduced by a pulse bias Vimp ~ Vr, othen nly majority carrier traps are 

recharged. The degree of trap filling depends on the filling pulse time width timp and on 

the capture coefficient of the traps cn;p, which is often formally expressed as the product 

of the thermal velocity times the capture cross section of the trap for the corresponding 

carrier type. If the pulse width is large enough (on the order of the pulse repetition 

period), one speaks of "saturation pulses", hence all deep levels in the space charge 

region should be filled after the pulse. For sufficiently small pulses, only a portion of all 

levels are filled, hence the signal gets smaller. Figure 4.7 shows an example of a DLTS 

measurement with the hole-like traps  revealed. The DLTS complements the leakage 

current measurents and can identify some of the intrinsic as-grown defects as well as 

radiation-induced defects that lead to device degradation. 

 

Figure 4.6.  Accent DL8000 digital DLTS system (with both LN2 and LHe cryostats). 
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Figure 4.7.  Hole-like traps in AlGaN/GaN from DLTS. Trap A1 is associated with 
threading dislocations. This figure shows the DLTS capacitance transient with varying 
applying voltage but constant TW (time width) and constant τp (filling pulse). 
 
 

 4.5.4. Optical Characterization: Photoluminescence 

Photoluminescence (PL) was accomplished using a HeCd laser (325 nm) as 

excitation source and with an emission detection range varying from 3550 to 7450 Å. The 

laser beam path is shown in Figure 4.8 as the incoming red arrow. The PL spectra were 

measured using a Spex 1250M spectrometer with a 2400 grove/mm grating blazed at 

3000 Å, typical for wide-band-gap applications. Samples from each wafer were pre-

characterized in order to establish a baseline and to observe the variation in radiative 

native defect centers owing to fabrication method. Post-radiation PL were taken  using a 

266-nm laser. Figure 4.9 provides the orientation and beam depth for the PL experiments. 

Penetration depths were assumed to vary as 1/eαd where α = 2.25 x 106 cm-1 for Si3N4 and 

is about 105 cm-1 for GaN.  Photoluminescence can give information of the impurity as 

well as other donor and acceptor energies. The post-irradiation PL peaks give a good 
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indication of how the irradiation has changed the donor-acceptor population and can help 

to explain post-radiation Hall measurement results, as well as the radiation induced 

defects that lead to decreased conductivity and increased leakage current.  

 

Figure 4.8.  PL setup for AlGaAs. 

 

 

Figure 4.9.  Orientation of the beam for PL measurements. For all thicknesses of Si3N4, 
the beam penetrated to the GaN layer. 
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V.  Experimental and Analytical Results for Electron Transport Characterization 

 

In Chapter 2, the physics needed to understand the devices researched in this 

study was given. This chapter discusses the effects of Si3N4 and radiation on the transport 

properties obtained by Hall system measurements, both with and without passivation and 

before and after electron irradiation.  Also two different AlGaN/GaN HEMT structures 

were used.  Both experimental and modeling results are shown. The focus first is on the 

Hall metrics of mobility, carrier density, and conductivity and then on the qualitative 

analysis of the traps and impurities that affect these metrics using PL data. Quantitative 

results are given by employing analytical models which show the depth of interaction as 

well as production rate of defects for Ga, Al, and N atoms. These models for the electron 

damage use a defect production algorithms based on Bethe Bloche (ICRU, 1984), 

previously described in Chapter 3. For the spatial distribution effects of the radiation, 

CASINO simulation results show where most of the damage occurs.  

The mobility as a function of scattering mechanisms was modeled self-

consistently to show the sum of the mechanisms contributing to the total mobility, and 

how they vary with structure and temperature dependence. The results are fitted and tied 

to experimental data in Chapter 7 for further analysis. The Hall carrier density and 

conductivity are also investigated as function of structure, silicon nitride passivation layer 

thickness and electron irradiation. Preliminary defect analysis is given by PL, which 

resolves the spatial localization of defects and can be correlated to a donor-acceptor 

defect pair through conservation of energy calculations. This chapter will answer the first 

set of investigative questions presented in Chapter 1, which are: What is the effect of 
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(a)The particular device structure and (b) the Si3N4 passivation layer thickness on the 

transport characteristics (such as the mobility, carrier density, conductivity). 

   

5.1.  Effect of Structure and Silicon Nitride Passivation Layer Thickness on Electron 
Transport Properties in Electron Irradiated AlGaN/GaN 

 

In this study, the effects of the passivation layer thickness were investigated at 

various thicknesses (0, 20, 50 and 120 nm) on a structure with an epi-stack as shown in 

Chapter 4, and then measured before and immediately after 1.0-MeV electron irradiation 

using a fluence of 1016 cm-2. It has been shown previously that radiation of this energy 

produces point defects and creates acceptors (Goodman et al, 2000). Hall measurements 

were used pre- and post-irradiation to observe changes in carrier density and mobility as a 

function of silicon nitride thickness and temperature. These measurements indicated the 

degree of preservation of mobility and conductivity as a function of Si3N4 thickness after 

irradiation. Additionally, Hall system measurements were used to observe changes in 

carrier concentration as a function Si3N4 thickness. These measurements were carried out 

to give information about the surface donor states and the Si3N4 charge at the interface. 

Hall carrier density data implies that the surface states are donors. 

First, mobility as a function of scattering mechanisms will be looked at, then their 

modeled scattering mechanisms as they vary with structure. Experimental data will show 

the effect of structure, as well as variation of silicon nitride passivation thickness on 

transport properties for electron irradiated devices. Experimental results from PL will be 

used to support the Hall measurements, which are pointing to a number of trapping 

mechanisms seen in the donor-acceptor pair transitions. 
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Since mobility in HEMTs is a function of the scattering mechanisms the carriers 

encounter, the scattering will be looked at along with models that compare the structures 

and the effects of silicon nitride passivation both before and after irradiation. 

 

5.2.  Room Temperature Mobility Results. 

Throughout this study, the effects of varying the passivation layer thicknesses are 

investigated on HEMT structures. Post radiation results show the degree of preservation 

of mobility and conductivity is a function of Si3N4 thickness. The following results are 

from 300-K Hall system measurements for mobility on AlGaN/AlN/GaN and 

GaN/AlGaN/GaN structures.   
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Figure 5.1. Comparison of 300 K mobility pre- (E0) and post- (E1) the 1-MeV irradiation 
for AlN (left) and GaN (right) cap structures.  
 

The room temperature change in mobility between pre- (E0) and post- (E1) 

mobility is shown in Figure 5.1 for the two structures. The presence of the GaN cap 



99 
 

reduces the scattering and therefore increases the mobility in the unpassivated sample; 

but its effect, as compared to the AlN structure, shows the difference in measured results 

diminishes comparatively with increased passivation layer thickness. Post radiation, with 

50-nm passivation, the effects begin to merge. Noticeably, there is a big improvement in 

the post-irradiation mobility over the unpassivated structure starting with 50 nm 

passivation, even relative to its higher starting mobility for the GaN cap.  Once 50 nm is 

reached, there is little change in the range between 50 and 120 nm passivation layer 

thickness. For the structure with an AlN interlayer, with a 300% improvement in mobility 

for the 120 nm sample and a 314% improvement for the 50 nm sample over the 

unpassivated sample, a claim can be made for substantial improvement and preservation 

of the device 2DEG mobility after irradiation with 1 MeV electrons. The GaN cap 

samples average improvement in mobility with passivation trailed the AlN structure, but 

started at significantly higher mobilities.  

 

5.2.1. Mobility as a Function of Scattering Mechanisms and Centers  

The temperature dependent as well as room temperature mobility measurements 

obtained for the structures in this research as a function of scattering mechanisms is 

described in this section. By incorporating the additional mechanism of alloy scattering 

found in HEMT structures, as well as interface roughness, over what was given in 

Equation 2.20, the mobility can be described as: 

     µc = e<τm>/m*, and τ-1 = τ -1ac + τ -1pe + τ-1
po + τ-1 ii + τ-1 dis + τ-1

alloy + τ-1
IR                   (5.1) 

The alloy scattering is decreased by the use of an AlN interlayer, in the AlN structure, 

and the interface roughness is increased with a use of a GaN cap, due to its effect of the 
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2DEG sub band levels (Ng et al, 1998). From Equation 5.1 , the Hall mobility, which is 

the averaged sum of these scattering mechanisms, can be calculated as: 

            µc ≈  µH = e<τ2>/m*<τ> , and  µH =RH σ   --- nH =n/r = -1/e RH                   (5.2) 

Scattering can be intrinsic or extrinsic, and I will briefly review each of the scattering 

mechanisms of concern that were described in more detail in Chapter 2 and the role they 

play in the structures in this study. Ionized impurities in AlGaN/GaN HEMTs are the 

source of unintentional doping. The HEMTs are unintentionally polarization doped and 

this is confirmed by the positively charged donor surface states in the AlGaN. If the 

thickness of the AlGaN barrier is high enough, ionized impurity scattering is not strong 

or dominant. These impurities contribute electrons to the 2DEG and account for the PL 

transitions that will be shown later. 

Dislocations in the lattice occur when the GaN is not grown on a GaN substrate, 

which results in lattice mismatch. Threading dislocations have been the subject of many 

studies (Marino et al, 2010).  Threading dislocations (the Coulomb potential is associated 

with the charge and the scattering potential is associated with the dislocation strain field) 

act as scattering centers and have a large core potential and deformation potential.  

Charged dislocations can cause scattering of electrons in the 2DEG. Like ionized 

impurity scattering defects, they only have an effect at low carrier densities. When 

threading dislocations reach a value of 1010 cm-2, they can have an effect and are believed 

to be a cause of leakage current (Ng et al, 1998; Weimann et al, 1998), showing up as 

hole-like traps in AlGaN/GaN DLTS (will be discussed in Chapter 6) and will be briefly 

addressed in section 5.3.  Figure 5.2 below is a microscopic depiction of a distorted 

crystal showing an edge dislocation. The yellow emission occurring at 2.2 eV in the 
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AlGaN/GaN PL on the right is believed to occur due to an acceptor trap formed at the 

end of an edge dislocation (Look, 1989). The associated PL spectra  at 2.2 eV shown is 

for samples with 0, 20, 50 and 120 nm of Si3N4 thickness, so these deep intrinsic traps 

persist with surface passivation, although there is some degradation of peak due to the 

attenuation of the PL beam going through the passivation layers. More PL examples will 

be given in section 5.3. 

  

Figure 5.2. Microscopic view of distorted crystal threading dislocations (right picture 
taken from Look, 1989). 
 

Acoustic phonons interact with electrons through the deformation potential and 

piezoelectric coupling. Atomic displacements are produced by acoustic mode vibrations. 

A secondary effect is the piezoelectric potential which occurs in compound 

semiconductors lacking a center of symmetry and interacting atoms are partially ionized. 

There is a difference in polarization charges between the AlN or AlGaN and GaN, which 
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leads to dipole dislocations and scattering of electrons in the 2DEG.  Scattering due to 

phonons is the largest scattering contribution that limits mobility at higher temperature. 

The acoustic and optical phonon scattering drops the mobility with increasing carrier 

density. Acoustic mode lattice vibrations induce changes in the lattice spacing, which 

changes the band gap from point to point (Meyers, 2008).  This results in the crystal 

being deformed at these points so the potential is called a deformation potential. The 

relaxation time (Norton, 2009) parameter is due to the averaged sound velocity. 

The optical phonons have high energy and interact with electrons through the 

polar optical potential. Increasing the carrier density leads to a rise in the Fermi level. 

This occurs upon reaching values (over the first sub-band ground state energy). This is 

larger than the optical phonon energy  and occurs as soon as the  carrier density reaches 

~8x1012  cm-2. Thus, the more optical phonon emission processes, the more the 

contributions to the free carrier mobility decreases.  

Evidence for increased carrier-carrier scattering is shown in Figure 5.3. The 

relationship between Si3N4 thickness, mobility and carrier density is not always linear, 

but there is an explainable relationship. Mobility correlates to carrier density in 

AlGaN/AlN/GaN usually inversely, until saturation. With the GaN cap structure, once 

2DEG carrier density saturation occurs, there are other processes occurring, depending on 

the thickness at which saturation is reached. If the saturation is reached at 20 nm in the 

GaN cap structure, then a significant lowering of mobility does not occur and it is not 

correspondingly the lowest mobility. When saturation occurs at 50 nm or 120 nm, then 

the mobility drop has is affected by the strain due to the thickness of the layers. Figure 

5.4 shows a plot of carrier density and mobility at 300 K as a function of Si3N4 
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passivation. The carrier density and mobility are inversely proportional; that is when one 

goes up, the other goes down, as implied by equation 2.13. The interface roughness 

scattering potential amplitude V0 in the square quantum well is approximately determined 

by assuming that local fluctuations of the interface position and of the roughness 

amplitude shrinks with well width. As the 2DEG waveform moves closer to the barrier 

(due possibly to things like increases in carrier density), there is scattering from interface 

roughness. Structures wherein the higher waveform sub-bands fill quicker, like those 

with a GaN cap, will have less interface roughness scattering and thus higher mobility 

because the higher sub-bands are further removed from the AlGaN interface. 
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Figure 5.3. Mobility as a function of carrier density and Si3N4 thickness in a GaN cap 
sample with its carrier density saturating at 20 nm. The higher the carrier density, the 
lower the mobility. The carrier density to Si3N4 thickness relationship is not the same for 
the AlGaN/AlN/GaN structures. 
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Figure 5.4. The approximately inversely proportional relationship between mobility and 
carrier density is shown. At 300 K, as carrier density goes up, mobility goes down due to 
carrier-carrier scattering.  
    

 

Alloy disorder scattering comes from the tail of the 2DEG waveform in the binary 

GaN penetrating the ternary AlGaN barrier. The alloy potential in the barrier randomly 

varies. As carrier density increases, the waveform penetration increases. This will shift 

the waveform closer to the barrier interface, and thus increase scattering and decrease 

mobility. The tail of the 2DEG waveform is decreased with the use of an AlN interlayer, 

because alloy scattering is reduced (Norton, 2009), thus allowing for higher mobility 

relative to an AlGaN/GaN structure with no interlayer.  
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5.2.2 Modeled Scattering Mechanisms for the Two Different Structures 

The scattering mechanisms in equation 5.1 were modeled using a program called 

Nextnano and shown in this section for both AlGaN/AlN/GaN and GaN/AlGaN/GaN. 

Modeled differences in scattering are based on no passivation or 50 nm of silicon nitride 

passivation layer thickness. The results give information about how Si3N4 may be 

affecting the mobility as a function of scattering mechanisms for each device structure.  

In modeling the mobility using Nextnano, Schrodinger and Poisson equations 

were solved self consistently to obtain values for the energies of  the individual quantized 

levels, the occupancy of the sub-bands, the electron densities in the 2DEG, energy band 

diagrams, and the total mobility as a function of  scattering mechanisms. An explanation 

of Schrodinger and Poisson equations was given in Chapter 2. 

The electrostatic potential needed in this model was obtained from Poisson’s 

equation. Also built into the model is the image and exchange correlation potentials using 

Numerov’s numerical method (Norton, 2009). Table 5.1 is a summary of the values of 

the scattering mechanisms taken directly from the modeling results shown in Figures 5.5 

to 5.10. Table 5.2 summarizes the main material parameters used in the models.  In 

Figure 5.6, the ionized donors at the surface are the largest scattering mechanisms. 

Residual scattering is from the GaN. Residual impurity concentrations are usually around 

1015 cm-3.  In Figure 5.7, with the addition of 50 nm of Si3N4, the sheet carrier density has 

increased and the total mobility has decreased.  
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Table 5.1. Scattering mechanisms used in Nextnano models. For Figure 5.6, the 
temperature range T [K] is given as 1 through 41, and for Figures 5.5 and 5.7 through 5.9, 
1< T <351 K.  
 
Temperature µ_total 

(m2/V-s) 
µ_ionized 
(m2/V-s) 

µ_ionized 
Bg(m2/V-s) 

µ_acoustic 
(m2/V-s) 

µ_polar 
(m2/V-s) 

µ_alloy 
(m2/V-s) 

Ns 

 (cm-2) 
1 9.8208 11.5039 425.8777 532.8409 1.0E15 93.5970 2.24E15 

11 8.16407 11.19416 420.3947 48.4409 1.0E15 98.6895 2.20E15 

21 6.68542 10.37912 405.7079 25.3734 1.0E15 88.0628 2.09E15 

31 5.66326 9.68972 392.8802 17. 1884 2.8E12 79.0469 1.99E15 

41 4.91125 9.0779 381.1501 12.9961 5.6E08 72.0139 1.90E15 

 

Table 5.2 Material Parameters used in mobility scattering models. 

 Symbol/unit GaN(wurzite)/Reference AlGaN/reference 

Electron effective mass (m*/mo ) 0.228 A 0.228 A 

Mass Density  (g/cm3 ) 6.1 B  

Conduction Band offset ΔEc / eV 0.333 C  

Band gap Eg / eV 3.45 3.47 

Donor level  ED/ eV  Vc – 0.2 

Default donor concentration  cm-3 5x1016 B 4x1016 C 

Acceptor level EA/eV  Vc – 3.0  

Default acceptor level cm-3 2.5 x1016 B  

Interface roughness 
parameter 

nm 1.5 A 1.5 A 

Static dielectric constant ε0 9.6 A 9.5 

Piezoelectric constant V/cm  –0.58 x – 0.22(1– x ) 

LO phonon energy meV 90.5 B  

 A Asgari et al, 2004; Asgari et al, 2005; Asgari et al, 2011. 
B Hsu and Walukiewicz, 1997. 
C Hu et al, 2001; Hu et al, 2007 
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Figure 5.5. AlGaN/AlN/GaN modeled scattering mechanisms 0 to 320 K. The most 
dominant scattering mechanism is acoustic phonon, while at lower temperatures the 
least dominant is polar optical.  
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Figure 5.6. Model of AlGaN/GaN with AlN spacer layer, showing the ionized 
background scattering which is due to residual impurity scattering. This model shows the 
scattering for temperatures from 0 to 40 K. The scattering is in units of m2/V-s. The polar 
optical scattering is not a significant contributor to the total mobility for this temperature 
range.  
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Figure 5.7. AlN structure with 50 nm Si3N4 scattering mechanisms 0 to 320 K. 
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Figure 5.8. GaN cap structure scattering mechanisms from 0 to 350 K. The units are 
given in Table 5.1. To see how each scattering mechanism affects total mobility, see 
equation 5.1. 
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The sheet carrier density is ~ 2E13 m-2 in Figure 5.8 for the GaN cap structure as 

opposed to ~ 1E16 m-2 for the structure with the AlN interlayer in Figure 5.5. Alloy and 

ionized impurity scattering now contribute more to the total mobility, shown also below 

in Figure 5.9.  The GaN cap, which serves also as a passivation layer, changes the 

temperature dependent behavior of the polar optical scattering.  

The sheet carrier density has increased with the addition of the 50 nm of 

passivation in Figures 5.7 and 5.9, but the alloy scattering now plays a bigger role has 

reverse effects as shown in Figure 5.10. For the passivated AlN structure, the alloy 

scattering decreases more rapidly than in the unpassivated sample. With the GaN cap 

sample, passivation gives a lower alloy scattering for the same range in the unpassivated 

sample. All samples maintain a flat alloy disorder potential, regardless of the structure or 

Si3N4 passivation. 
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Figure 5.9.  GaN cap structure with 50 nm Si3N4 scattering mechanisms from 0 to 320 K. 
The top curve, sheet carrier density, has units of cm-2. 
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Figure 5.10. The modeled alloy potential and scattering as a function of region. Upper 
right and left: There is a slight drop in alloy scattering in the AlN interlayer region with 
Si3N4.  Lower Right: the results are for the GaN cap structure with 50 nm of Si3N4 
passivation.  
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The mobility due to alloy scattering only is described by (Asgari et al, 2011):  

         µalloy =     23/2  
3

 𝜋1/2    𝑒ђ4

𝑉𝑐𝛼(1−𝛼 )𝐸𝐴𝐵
2  𝑚∗5/2  𝑘𝑇1/2   

                                     (5.3) 

It can be seen that there is some temperature dependence with this mobility, and it would 

effectively decrease the mobility as the temperature increases. Since the y axis is a log 

scale and the higher the values are less of a contribution, it shows alloy scattering 

contributes less to the decrease in total mobility in AlGaN/AlN/GaN, regardless of 

passivation until room temperature. With the GaN capped structures, the alloy scattering 

contributes more to the total mobility, but does not show the temperature dependence, so 

one of the other terms contributing to the alloy scattering may be countering the effect, 

like the potential term 𝑉𝑐𝛼(1 − 𝛼 )𝐸𝐴𝐵2 . Perhaps it is nondegenerate for the GaN cap 

structure over a wider temperature range. The cap structure has a higher total mobility, 

due in part to the fact the GaN cap structure is showing less phonon scattering, as well as 

a lower sheet density, which would mean less carrier-carrier scattering. The residual 

scattering, to be found in the GaN bulk is lower but the acoustic and polar optical 

scattering is slightly higher.  

 

5.2.3 Experimental Carrier Densities 

In HEMTs, the electric field is very high, so mobility is not necessarily the most 

important metric. Saturation velocity must be evaluated, and thus the carrier density. So 

in addition to looking at channel conductivity, which is mobility dominated,  it is also  

important to consider how the carrier density connects to Schottky (gate )current 
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measurements. The Schottky (gate) current results to be presented in Chapter 6 relate to a 

corresponding carrier density.   
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Figure 5.11. Pre-irradiation (E0) comparison of (left) AIN vs. GaN cap carrier density 
and the pre- and post-irradiation (E1) carrier density comparison of both structures. 
 

The left side of Figure 5.11 shows the room temperature comparison of carrier 

density prior to irradiation. There is some sample-to-sample variation for all Hall 

parameters due to processing irregularities, so averaged values are presented. The post-

irradiation results (on the right) show the passivated GaN cap structure loses a larger 

percentage of carriers as compared to the unpassivated GaN cap. The unpassivated cap 

structure gains carriers, but the unpassivated AlN structure loses carriers. The radiation 

may be creating more donors in the former, but more acceptors in the latter.    

With passivation, post-irradiation carrier density loss is minimal in the AlN 

structure with 50 or 120-nm passivation layer thicknesses, whereas 20 nm is less effective 
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(right side, Figure 5.11). From section 5.2.1, increases in carrier density lead to a raising 

of the Fermi level upon reaching values (over the first sub-band ground state energy) 

larger than the optical phonon energy. When the carrier density reaches values as large as 

1.3x1013 cm-2, the mobility reaches a constant value of 1100 cm2 V-1s-1. This, in principle, 

should be the maximum mobility in quantum wells at large carrier densities. However, 

the combined phonon and carrier–carrier scattering mechanisms do not explain the 

saturation of mobility at lower carrier densities or the sharp mobility decay that starts at 

carrier concentrations of ~1.4 x 1013 cm-2 (Wolfe et al, 1989) and is shown in Figure 5.13.  
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Figure 5.12. Averaged 300-K results over the sample sets show that the AlGaN/AlN/GaN 
structure has a higher carrier density prior to irradiation than a structure without an 
interlayer. 
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Figures 5.13.  The pre- (E0) and post- (E1) irradiation 300-K carrier density and mobility 
for the GaN cap structure. 
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Figure 5.14.  The pre- (E0) and post- (E1) irradiation 300-K carrier density for the 
structure with an AlN interlayer. 
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The room temperature and temperature-dependent carrier density results in 

Figures 5.12 through 5.14 show the effects of structure, passivation layer thickness, and 

1.0-MeV electron radiation on the Hall carrier density for the samples in this study. The 

AlN structures show a consistently higher carrier density but lower mobility (Figures 

5.12 and 5.14) with passivation layer thickness, both before and after irradiation. For 

increasing temperature, in accordance with Fermi Dirac statistics, there is a greater 

probability that higher sub-bands will be occupied. 

                        ni = (e(Є-µ ) kT  +1)-1                                                                                                                 (5.4) 

For the corresponding mobility, it is shown according to Asgari (Asgari et al, 2004) in 

Figure 5.15 in the next section, that the higher two sub-bands have a greater mobility at 

low temperatures. For the most part, mobility µ and carrier density ns are inversely 

proportional. As room temperature is approached, the higher sub-bands quickly decrease 

in mobility. 

 

5.2.4. Modeled Conduction Bands as a Function of Structure and 2DEG Electron 
Densities  

A more detailed discussion is outside the scope of this research, but models of the 

conduction band profiles and first subband electron densities for the two structures were 

attempted and are shown in Figures 5.16 through 5.22.  Wavefunction models of the 

2DEG carrier density for both the AlGaN/AlN/GaN structure and the GaN/AlGaN/GaN 

structure are shown. Such information is useful in analyzing the change in current 

conduction and tunneling mechanisms, as well as being able to identify the relative 
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locations of traps and impurities in one structure versus another and with the addition of 

varying passivation layer thicknesses as the surface potential varies. 

It should be noted in Figure 5.15 that the second sub-band wave function ψ2  is 

significantly farther from the interface than the first sub-band. As a result, electrons in the 

higher sub-bands are not confined and situated as closely to the AlGaN interface. The 

low-temperature dominant scattering mechanisms will not affect electrons in the higher 

bands. These include impurity, interface roughness and alloy scattering. So the higher 

sub-band electrons will have a weaker piezoelectric scattering than those in the first sub-

band.  As discussed previously and shown in the modeled temperature-dependent plots, 

acoustic phonon scattering is a dominant scattering at room temperature.  

   Relative to the effect of variation of structure as done in this study, it is known 

that structures with GaN caps have a quicker rate of fill for the upper sub-bands than do 

structures without a GaN cap. Therefore, low-temperature mobility should be higher than 

for a structure without this cap.  This is shown by comparing Figure 5.24 with Figure 

5.25.  Without an AlN interlayer, which appears as a spike in the conduction band at 18 

nm, there would be an increase in alloy scattering. The electron density is difficult to 

represent in Figure 5.17 because of the change in scaling necessary with the addition of 

50 nm silicon nitride, which has an Eg ~ 5.4 eV.  An enhanced “zoom in” of a portion of 

the figures is included. Note there is an additional electron density occurring outside of 

the 2DEG area with the addition of 50-nm passivation. Figure 5.18 shows the electron 

density when 50 nm of Si3N4 is added to an AlN structure. 
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Figure. 5.15. The 2 DEG sub-band mobility and carrier density (Ng et al, 1998). 
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Figure 5.16. Modeled first sub-band energy and conduction band for AlN (1 nm)  in 
Al0.25Ga0.75N/GaN. 
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Figure 5.17. Modeled first sub-band energy and conduction band for Si3N4 (50 nm) and 
AlN (1 nm) Al0.25Ga0.75N/GaN(left) along with zoom of the area showing the electron 
density.  
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Figure 5.18.  The electron density for the AlGaN/GaN/GaN structure with 50 nm of 
Si3N4. 
 

Figures 5.19 through 5.22 model the GaN gap structure without and with 50 nm 

passivation, and their electron densities. Figure 5.22 shows how far the waveform 

extends into the GaN as opposed to the model in Figure 5.16 where there is an AlN 

spacer layer keeping the tail of the wavefunction from spreading into the GaN. 
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Figure 5.19. Modeled conduction band for GaN (2 nm)/AlGaN/GaN (left) with enlarged 
view of  the cap area. 
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Figure 5.20. Modeled conduction band for Si3N4 (50 nm)/GaN (2 nm) Al0.25Ga0.75N/GaN 
(left) and enlarged view of cap area (right). 
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Figure 5.21. Modeled electron density for Si3N4 (50 nm)/GaN (2 nm) Al0.25Ga0.75N/GaN 
between the edge of the Si3N4 and the front boundary of the GaN. 
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Figure 5.22.  The first electron wave function in the 2DEG area of the GaN cap structure. 
 

5.2.5.  Experimental Conductivity Results 

Figure 5.23 gives the conductivity comparisons between pre- and post-irradiation 

for both structures, for which the use of an unpassivated GaN cap will be later shown as 

more robust to leakage currents. The improvement for the AlGaN/AlN/GaN structure 

after irradiation with 120 nm Si3N4 thickness was about a factor of 8 over the 

unpassivated, and for the GaN cap was about a factor of 5.5 over the unpassivated. A 

silicon nitride thickness of at least 50 nm is needed for improvement in post-radiation 

conductivity for both structures. The conductivity given in equation 2.13, which is a 

product of the mobility µ and the carrier density ns, is restated below. 

                                                    σ = q µns                                                                             (5.5) 

In Figure 5.23, the conductivity is changing either due to mobility or carrier density. 
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Figure 5.23. Comparison of 300-K conductivity pre- (E0) and post- (E1) 1-MeV 
irradiation on AlN (left) and GaN (right) cap structures. 
 

If the mobility is being affected, then induced acceptors (and subsequent 

scattering centers) are scattering the electrons and reducing the mobility contribution to 

the conductivity. High mobility always dominates, until phonons (at higher temperature) 

kick in, and mobility goes down. As it can be concluded with the corresponding mobility 

in Figure 5.1, the irradiation is producing scattering centers. These centers would result in 

the capture a hole and electron, indicating Si3N4 is non-radiative. The interface is the 

same regardless of the thickness of the silicon nitride, and will still have dangling bonds. 

The thicker the Si3N4, the more strained are the underlying layers (Hu et al, 2007). This 

strain translates into a difference in the induced field responsible for the 2DEG density.   

 

5.2.6.  Additional Effects of Silicon Nitride Passivation   

For both structures in Figures 5.1 and 5.23, Si3N4 is not a significant effect pre-

irradiation, but after irradiation, there is a significant improvement in mobility once there 
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is 50 nm or more of the passivation layer.  There is a saturation point for benefits of 

additional thickness of passivation, as there is little improvement between 50 and 120 nm 

of passivation thickness. If Si3N4 is the source of a more positive field, then charge 

balance as shown in equations 5.6 through 5.12 assures more electrons will transfer 

through to the 2DEG. Also, with increased thickness of a passivation layer comes 

increased tensile stress and carrier density. A positive surface charge at the Si3N4 /AlGaN 

interface would have a field effect, resulting in more transfer of electrons from donor-like 

surface states into the empty states that are lower in energy. When surface traps are 

passivated by Si3N4, it appears that more electrons are able to transfer to 2DEG. 

The mobility is determined by scattering mechanisms as shown in section 5.2.2.  

Thus, it can be deduced that adding Si3N4 will bring additional electrons and scattering 

centers, thereby reducing the mobility. The charge at the AlGaN/GaN interface is due to 

polarization charges, either positive or negative, as is the charge at the Si3N4 /AlGaN 

interface. With the resulting polarized atoms, there is higher charge on one side, and 

electrons are drawn because of polarized charge. So the changing measurement resulting 

from the varying thickness of Si3N4 could be attributed to either increasing or decreasing 

the electrons because of its presence. If Si3N4 is positively charged as indicated by Meyer 

(Meyer, 2008), then increasing amounts of Si3N4 when the layer is made thicker, should 

result in a  higher net positive charge. With the changed charge balance ratios, the effect 

on the device would be to attract more electrons into the 2DEG. This then results in the 

Hall carrier density increase. Equation 2.1 (Ch. 2) can be written as:  

σpz,AlGaN  + -σpz, AlGaN  +  +σAlGaN + σBuffer + σ surface + -σ AlGaN  +  +σAlN  +σpz, AlN  + -σpz,AlN    

                                                                                 = q ns,AlN                                           (5.6) 
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The polarization charge vectors act in the same direction for the AlGaN and AlN, so there 

will be an increase in the 2DEG sheet charge density. For the GaN cap, we have: 

 σpz,AlGaN  + -σpz, AlGaN  +  +σAlGaN + σBuffer + σ surface + -σ AlGaN  +  -σCap  +σpz, Cap  + -σpz,Cap  

                                             = q ns,Cap                            (5.7) 

The polarization charge vectors at the GaN/AlGaN interface, -σCap  , are anti-parallel or in 

opposite directions. The last two terms on the left hand side of the equation are zero, so 

that net charge for the 2DEG density is reduced.   

To account for the addition of Si3N4 in the AlN structure, let the left hand side of 

Equation 5.6 for the AlN structure be called “X”, so it can be written: 

     X+ σpz,Si3N4  + -σpz, Si3N4  +  +σSi3N4 = q ns,AlN,P                                          (5.8) 

Since silicon nitride is amorphous and has no polarization charges, the equation will 

reduce to:  

      X + +σSi3N4 = q ns,AlN,P              (5.9) 

Assigning a value of “Y” to the left hand side of equation 5.7 and now accounting for the 

extra layer of Si3N4 passivation, equation 5.7 becomes: 

Y + +σSi3N4 = q ns,Cap,P            (5.10) 

The results throughout this chapter will show that the sheet-carrier density increases with 

Si3N4 passivation layer thickness, as in equations 5.9 and 5.10. AlN adds to polarization 

charge, and changes the band structure (Figure 2.10a versus Figure 2.10b). Since it is the 

net charge at the AlGaN/GaN or AlN/GaN interface that attracts the electrons into the 

2DEG, increased positive charge from Si3N4 allows increased transfer of electrons into 

2DEG and thus higher Hall carrier densities for structures with this interlayer are 

observed in the results throughout this section. The benefit of the GaN cap structure is it 
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serves as a surface charge control layer, reducing the effect of polarization charge; it 

screens the 2DEG from surface traps that lead to current collapse.  

 

5.2.7.  Temperature-Dependent Mobility and Carrier Density 

Temperature-dependent studies provide useful information to indicate whether 

scattering potentials that have a 1/T dependence are present (see sections 5.2.1 and 5.2.2). 

From ~0 to 350 K, Figures 5.24 and 5.25 show that the relationship is very similar for 

both structures for the unpassivated change in mobility with 1-MeV electron irradiation. 

The mobility for both structures can be correlated to their respective carrier densities, to 

be shown  next. The greater the carrier density the more scattering and a lower mobility 

results. For both structures, the 50 to 120 nm passivation proves most beneficial post 

radiation in preserving mobility over the temperature range studied.  

The structure with the AlN interlayer (see Figure 5.26) shows a higher carrier 

density pre-irradiation than the structure with the GaN cap (Figure 5.27). The explanation 

was given in section 5.2.3. There is an alignment of the AlN and AlGaN polarization 

vectors, resulting in increased σ0 at the 2DEG interface such that the carrier density is 

increased (Klein et al, 1986). This leads to the radiation-induced changes in carrier 

density verified also in the charge balance relationships. 

For the post-radiation charge balance for both structures, the radiation affected 

both the sheet carrier density and mobility. The specific charges contributing to the2DEG 

that are affected by radiation from equations 5.6 and 5.7 are: 

                         +σAlGaN + σBuffer + σsurface + -σAlGaN                                                 (5.11)  
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Figure 5.24. Temperature-dependent mobility as a function of Si3N4 thickness for 
AlGaN/AlN/GaN structure before (E0) and after (E1) 1-MeV electron irradiation. 
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Figure 5.26. Temperature-dependent carrier density for AlGaN/AlN/GaN shows a higher 
carrier density than the GaN cap structure; there is little change in the pre- and post-
radiation unpassivated carrier density (red), until room temperature.  
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Since the 1-MeV electron irradiation creates acceptor-type charges in the AlGaN, 

then the  -σAlGaN   changes will be more dominate and contribute to the charge balance by 

reducing the net total charge. Additionally, although the GaN buffer does not 

significantly contribute, it is also changed by the radiation. If there is some ionization of 

the surface charges, then the above term for post radiation can be written as 

                       +σAlGaN,E1 + σBuffer,E1 + σsurface,E1 + -σAlGaN,E1  = ΔσAlN,E1                                  (5.12) 

The post irradiation irradiated charge balance equation for a passivated AlN structure 

given in equation 5.9 can then be written as: 

    q ns,AlN  - ΔσAlN,E1 = q ns,AlN,P,E1                                                             (5.13) 

Using equation 5.10 for the GaN cap structure, the post-radiation passivated sheet carrier 

density can be expressed as: 

                  q ns,Cap  - ΔσCap,E1 = q ns,Cap,P,E1                              (5.14) 

The addition of the passivation layer is observed to reduce the mobility. Referring back to 

equation 5.1, the the addition of Si3N4 will introduce more carrier-carrier scattering, and 

the equation will change as follows: 

µc = e<τm>/m*, and τ-1 = τ -1ac + τ -1pe + τ-1
po + τ-1 ii + τ-1 dis   + τ-1 c-c, P                              (5.15) 

For the carrier mobility given in equation 5.1, the 1-MeV electrons cause 

ionization and displacement damage. The mobility as a function of scattering relaxation 

after irradiation can be written with the addition of three extra terms, shown in bold face 

type in the following equation. 

   µc = e<τm>/m*, and τ-1 = τ -1ac + τ -1pe + τ-1
po + τ-1 ii  + τ-1 ii,E1  + τ-1 dis   + τ-1 dis,E1   + τ-1 c-c,E1              (5.16) 
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Thereby, the post irradiation mobility is reduced. The last term adds the additional Si3N4 

carrier–carrier scattering and radiation-induced acceptor scattering.  More analysis along 

with a model will be presented in Chapter 7. 

 

5.3.  Photoluminescence Measurements for Spatial Localization of Defects 

  Chapter 2 gave the details of how a PL emission created as a result of incident 

light from a laser can qualitatively identify traps and impurities in semiconductors by its 

energy position.  Traps in AlGaN/GaN lead to degradation in device performance, such 

as DC to RF dispersion (Kalavagunta, 2009; Hu et al, 2007), gate leakage, and current 

collapse. Traps change transport properties which include degraded mobility, carrier 

density and conductivity. Traps and defects can be in the bulk, surface or interfaces. They 

can be intrinsic or extrinsic. If they are shallow donors, they can be compensated for 

impurities such as oxygen or silicon impurities (Kalavagunta, 2009). 

Intrinsic traps can be due to lattice mismatching or threading dislocations created 

in the growth process. Figure 5.28 shows lattice dislocations (left side) and point defects 

(right side). Additionally, there are positively charged surface donor traps that result from 

dangling bonds. Table 5.3 summarizes the traps in AlGaN/GaN along with their 

respective energies (Klein et al, 1986). A discussion follows on the Yellow line (YL) trap 

and Blue line (BL) below, and is shown in Figure 5.29, using the pre and post radiation 

deep center PL spectra of the samples in this study. This is followed by showing the GaN 

PL signatures seen in samples in this research. How the PL varies with Si3N4 variation 

prior to irradiation will be shown and then the post-radiation changes to the PL spectra 

will be reported.  
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Figure 5.28. Volumetric dislocation on the left and a point defect on the right 

 

Table 5.3. Trap location summary (CB = conduction band). 

General description Distance from CB Reference 
Deep level 1.8 eV and 2.85 eV Klein et al, 1986  
Lattice dislocation 0.5-0.6 eV Polyakov et al, 2008 
 Nitrogen 
interstitials/Gallium 
vacancies 

1.0 eV Polyakov et al, 2008 

Nitrogen vacancy 0.18-0.27 eV Cho et.al, 2001; 
Fang et al, 2009; 
Polenta et al, 2009; 
Look et al, 2005 

Nitrogen antisite 0.5 -0.6 eV Cho et.al, 2001; 
Polenta et al, 2009; 

YL/acceptor 
defect/Ga vacancy 

2.2 eV Reshchikov and 
Markoc, 2005; 
Calleja et al, 1997 

BL 2.8 eV Look, 2006 
(Via DLTS) 0.58 and 1.1 eV Ogino and Aoki, 

1980 
AlGaN/Nitrogen 
vacancy 

0.85 eV Fang et al, 2009 

AlGaN (irradiation 
induced) 

0.33 eV, 0.38 eV Hogsed et al, 2005 
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Figure 5.29. Radiation producing centers change the PL peak intensities indicating 
change in acceptor defect population leading to the 2.2 eV deep center PL. 
 

 

5.3.1.  Initial Look at Effect of Si3N4 Thickness on PL from Deep Centers 

The yellow line (YL), as shown in Figure 5.29 in the deep center PL peaks near 

2.2 eV and is due to a transition with a shallow acceptor level (Colton, 2000) believed to 

be VGA. The acceptor trap level may lie along an edge dislocation line at the end of an 

atomic plane (Meyer, 2008). Cathodoluminescent studies (Polenta et al, 2000) further 

describe these centers as edge dislocation lines. The yellow emission can also be defined 

as occurring when the electron wavefunctions of adjacent trap sites overlap (Meyer, 

2008). For the effect of the Si3N4 layer thickness, there is simply a linear attenuation of 

the PL light with the passivation layer thickness before irradiation. Post irradiation, the 

thicker or more dense the layer, more non-radiative centers are created that can result in 

the capture of an electron or hole at 3.0 eV. 
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5.3.2.  GaN PL Signatures and Defect Trap Locations 

In the PL spectrum shown in Figure 5.30, the classic peaks associated with GaN 

are seen. The main peak at 3.463 eV is the result of the collapse of an exciton bound to a 

DX center. As described previously in Chapter 2, the exciton is an electron- hole pair, 

bound by the Coulomb interaction.  They seek out and orbit around a neutral donor 

located below the conduction band at Ed. Because it is metastable, it collapses and thus 

we have a radiative recombination peak. This peak is from the GaN buffer and is 

representative of the bulk material. The collapsed exciton releases its energy as a 

radiative emission.  Two additional side bands, separated from the main PL peak by the 

multiples of the LO phonon energy of ~ 90 meV are also seen in Figure 5.30 due to 

momentum-conserving recombinations. 

 

Figure 5.30. The unpassivated, pre–irradiation spectrum excited using a HeCd laser. 
There is a 2nd order transition occurring at 1.7 eV and is due to the use of a diffraction 
grating, n*λ = 2 d sin θ.  The 2nd order of the laser line appears at 1.9 eV.       
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Figure 5.31. PL spectra from 3.25 to 3.50 eV, showing the dominant DoX peak and the 
non-radiatively produced phonon replica peaks.  Note vertical log scale. 
 

Figure 5.31 shows the PL observed in the range from 3.25 to 3.55 eV, in the near 

band edge vicinity. These spectra are for all the thicknesses of Si3N4 and are shown on a 

vertical log scale. Subsequent figures will zoom in closer to show the variation of peak 

height with Si3N4 passivation thickness. A free exciton can be observed at 3.478 eV. Its 

binding energy is 0.025 eV. When this binding energy is added to 3.478 eV, one obtains  

3.503 eV, the result is what the band gap would be.  

For the observed dominant peak above, the light emitted would need to be 3.465-

0.093=3.372 eV, which is where the first phonon replica line is. The phonon replica here 

is part of a doublet, so it is related to a small shoulder the same distance away. The 

second set of phonon peaks are about 0.093 eV away from the first set. All these peaks 

show that conservation of energy is maintained when the exciton annihilates.  

102

103

104

105

106

107

3.25 3.30 3.35 3.40 3.45 3.50 3.55

0(09,06)325nm,S=256
20(04,07)325nm,S=128,x4
50(02,05)325nm,S=128,x4
I20(06,03)325nm,S=256

3.4868 eV

89.6 meV 93.4 meV

7.0 meV
11.1 meV

3.2819 eV

3.2889 eV

3.3715 eV

3.3826 eV

3.4427 eV

3.4649 eV

E (eV)

PL
 in

ten
sity

 (a
rb.

 un
its)

E0,Si3N4 compare, 325nm



134 
 

Two main neutral donor bound exciton (D0 X) peaks were observed: Oxygen 

donors give rise to PL at 3.46 eV and Si donors give rise to PL at 3.466 eV. Again, it can 

be assumed we are looking at GaN with the PL light, because AlGaN so thin (~18 nm).  

The oxygen-related BE are likely a result of processing, from oxygen in the growth and 

annealing environment.  

 

5.3.3.  Effect of Variation of Si3N4 Passivation on Deep Center and Near Band Edge   

Figure 5.32 shows that the PL light passing through the samples is attenuated 

linearly. A model for the transitions that cause the YL and BL emission is shown further 

below.  There is a yellow band (YL) at 2.2 eV for n-type GaN from a shallow donor to a 

deep acceptor. The YL is associated with oxygen and appears at 2.2 eV. The blue band at 

3.0 eV seen in semi-insulating material such as silicon carbide, which is the substrate for 

these samples, is most likely the source of Magnesium (Mg). The Mg (acceptor) on 

Gallium site is 200 meV. Mg can be complexed with Nitrogen vacancies. 

Figure 5.33 presents the results of the pre-irradiation NBE PL measurements.  The 

D0 X from Oxygen in Figure 5.33 involves the collapse of an exciton attached to an 

isolated ON. There is observed a shift in the main D0 X peak occurring at 3.46539 eV due 

to the GaN being grown on a SiC substrate, as opposed to what is observed in unstrained 

GaN (Calleja et al, 1997).  
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Figure 5.32. E0 Deep center PL with variation of Si3N4 thickness, showing the YL peak 
at 2.3 eV and the BL peak at 3.0 eV. 
 

 

Figure 5.33.  Near band edge showing a mono-atomic attenuation of the PL light with 
Si3N4 thickness.  
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The reason for the peak shift is GaN is wurtzite and the silicon carbide (SiC) 

substrate is hexagonal. The higher tensile strain when grown on SiC can be explained by 

the differences in lattice constants. The main peak in unstrained GaN is at 3.471 eV. GaN 

has lattice parameters of a=3.189 Å and c= 5.185 Å. SiC has lattice of a=3.07335 Å and 

c=10.053 Å, causing a strain shift and thus peak at 3.46539 eV for the unpassivated 

sample, and 3.46481 eV at 1200 Å Si3N4 thickness, due to compressive tensile strain. The 

peaks at 3.46 eV is substantially reduced by the 120 nm of Si3N4, but one observes the 

emergence of a peak at ~3.479 eV.  Si3N4 has a lattice parameters a=7.596 Å and c=2.711 

Å. While not studied extensively in this research, this strain plays a role in device 

performance (Reshchikov and Markoc, 2005). 

Below is a plot of how the Si3N4 attenuates the pre-irradiation PL.  

 

0 10 20 30 40 50 60 70 80 90 100 110 120
0.7

0.8

0.9

1.0

At
ten

ua
tio

n

Si3N4 Thickness

 Attenuation

e-αd

 

Figure 5.34.  Linear attenuation of the PL light with increase in Si3N4 thickness. 
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The variation with Si3N4 thickness-absorption depths were calculated, Figure 

5.34, showing absorption falls with (Si3N4 thickness) off as 1/eαd. So for 120 nm, depth 

penetration is approximately the Si3N4 thickness. Using I/I0 = 1/eαd, at a thickness of 

120nm, 76% of the light is getting through. There are other explanations for the decrease 

in intensity of the main PL peak due to Si3N4. As shown, based on the calculation for 

attenuation, as the 325-nm laser passes through thicker material, there is less light 

reaching the GaN and subsequently a lower PL intensity. Some of the light is also 

reflected at interfaces. The observed intensity differences are not just due to the 

attenuation of the light. PL is based on radiative recombination, so non-radiative centers 

could also cause non-radiative recombination. For Si3N4 and AlGaN, typical surface 

states are non-radiative centers.  

Additionally, since the PL data show the Si3N4 passivated samples have lower 

energy peaks, this possibly means there is tensile strain.  It looks like with increasing 

Si3N4 thickness, red shifts in energies are occurring. The thicker the Si3N4, the more 

tensile strain on the GaN (Colton, 2000). Some attribute the increase in strain to an 

increase in sheet charge density (Colton, 2000), in agreement with this study which is 

showing higher electron sheet charge density with increasing Si3N4 passivation thickness.   

Important in trap analysis and assessing device degradation are identifying donors 

and acceptor density changes. In AlGaN/GaN, there are DX centers and other donors that 

give rise to levels 0.2 to 0.3 eV below the conduction band. This is not so deep that it 

can’t transfer over to the GaN. It doesn’t have to be a classical DX center, as described in 

Chapter 2. As the source of un-intentional doping that makes the GaN n-type, if there are 
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not enough of those electrons to transfer over to the 2DEG to give 1013 cm-2, then they 

have to come from somewhere else, the surface being that other possibility.  

 

5.3.4.  Effect of 1-MeV Electron Irradiation and Si3N4 Passivation  

The previously described peak at 3.4649 is shown in Figures 5.35 and 5.36 and is 

the result of a different process than those in the deep center for the YL and BL. The YL 

is associated with gallium vacancies, and the BL is associated with nitrogen vacancies. 

The near band edge peak results from an exciton bound to a D0X collapse.  Below is 

shown the post radiation (E1) comparison of all the Si3N4 thicknesses for NBE and deep 

center PL. 

 

 

Figure 5.35. PL from unpassivated samples after 1-MeV irradiation.  Deep centers are not 
affected as much as shallow centers by irradiation. 
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Figure 5.36. PL from sample with 50-nm passivation layer after 1-MeV irradiation.  Deep 
centers are not affected as much as shallow centers by irradiation. 
 

  

Figure 5.37. PL taken after 1-MeV irradiation showing deep center to NBE region. 
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Figures 5.35 and 5.36 compared the normalized pre- and post-irradiation (E0, E1) 

PL data for AlGaN/AlN/GaN for an unpassivated and 50-nm passivated structure. In 

Figure 5.37, the normalized irradiated samples for 0,20, 50 and 120 nm are compared. By 

comparison with the data shown in Figure 5.31, it is clear that the order of intensities of 

the peaks have changed.  Before the irradiation, the peak intensities of both the YL (2.2 

eV) and BL (3.0 eV) changed monotonically with Si3N4 thickness. The irradiation has 

changed the shallow donor and defect concentrations that produce the YL and BL 

transitions. This tells us what the radiation produced defects are. The change in Hall 

carrier densities, the defect production algorithms, and the DLTS in Chapter 6  should 

concur as to what the radiation has done.  The post 1-MeV electron irradiated PL that 

includes the NBE region is shown in Figure 5.38. Notice that in addition to being 

degraded, the near band edge peaks are broadened by the irradiation, indicating possibly 

lattice displacement damage. The NBE degradation relative to the un-irradiated for the 

NBE is evident in Figures 5.34 and 5.35 for no passivation and 50-nm passivation.  In 

Figure 5.38, there is a greater degree of peak degradation in the near band edge. 
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Figure 5.38. PL taken after 1-MeV irradiation for the emission region from 3.20 to 3.60 
eV, which includes the near band edge. 

 

Clearly in Figure 5.38, the electron irradiation is destroying the components of PL 
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Radiation increases the VGA production also, but perhaps the ratio of either O or Si that 

can cause the peak has been altered due to the radiation.  The peaks are related to the 

energy of the donors or acceptors in the transitions. VN is below the Fermi level and is 
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neutral. A model will be given in Chapter 7 that explains the observed PL changes and 

what that says about the traps, donors, acceptors and impurities in these samples.  

 

 

 

 

 

 

 

 
Figure 5.39. The pre- and post-1-MeV radiation deep center PL for the sample variation 
range. The top 4 curves for the YL at 2.2 eV are the pre-irradiation spectra and the 
bottom 4 curves are post irradiation (E1). For the BL~3.0eV, the order of the curves is 
changed, believed to be due to both more Vn being created and no reduction in the 
available Mg involved in the transition that forms the peak.  
 
 
 
5.4.  Radiation Effects: Analytical and Monte Carlo Models of Radiation Damage 
and Defect Production 

Chapter 3 addressed basic radiation effects. Now some of the modelled radiation 

effects done on the structures in this research will be described and interrelated with the 

presented results. Analytical models using defect production algorithms modeled the rate 

of defect production and the distance travelled by the incident 1-MeV electrons as a 

function of distance. Bethe Bloche was used as the algorithm, with some modifications. 

However, these models did not incorporate stress, heating, or polarization effects.  
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Figure 5.40. Modeled mean free path depth of 1-MeV electron through Si3N4 (left), 
through AlGaN (right), and through GaN (bottom) as a function of kinetic energy. 
 

 

5.4.1.  Modeled Defect Production Algorithm Results 
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which is based on the Bethe Bloche formula given in Chapter 3. It calculates the number 

of defects per layer produced by 1-MeV electron irradiation. The steps are given here to 

obtain the production rate of defects, which are shown in Table 3, and were evaluated as 

follows: 

1. For each atom in each layer of AlGaN/GaN, the cross section σ (see equation 3.2 

of Chapter 3) was computed by the kinetic energies (KE), displacement energies 

(Ed), atomic number (Z), and densities (Mc) per atom in interaction.  The 

displacement energies were also discussed in Chapter 3 (section 3.1.3).  

  

 

To obtain, for example, for AlGaN; 
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To obtain the stopping power, a modification of equation 3.3 was used, dE/dx: 

 

 And again for Nitrogen in AlGaN, the result was: 
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To obtain the kinetic energy as a function of depth and the log of the cross section as a 

function of depth, the mean free path λ was calculated resulting in: 
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The final production rate of defects were calculated and tabulated below, using: 

production1 dosenm n1⋅ σ 106 Ed1, Z1, Mc21, ( )⋅:=       

Where dosenm is the radiation dose used for my samples and was 1016 cm-2 ,which was 

then converted to nm-2; n1 is a programmatically obtained value and Ed1 is the 

displacement energy of the particular atom (for AlGaN there will be Ed1, Ed2 and Ed3), 

and Mc21 stands again for the density. 

 

Table 5.4. Table is based on defect production algorithm model, showing that the highest 
production rate for damage is for lattice atoms gallium, nitrogen, aluminum and silicon. 

   

 
 

     Effect of Si3N4 

 GaN/1700nm GaN 
cap/2nm 

AlGaN/18nm AlGaN (W 
cap)/ 
19.7nm 

AlN/ 
1 nm 

Si3N4/20nm Si3N4/50nm Si3N4 / 

120nm 

Ga/nm3 15.77x108 18.55x105 2.15x107 2.36x107 - - - - 

N/nm3 8.134x108 9.57x105 1.483x107 1.623x107 - 43.6 x106 1090.13x106 2616.3x106 
Al/nm3   1.483x107 1.623x107 -    
Si/nm3 - - - - - 46.12x107 1115.63x107 2766.3x107 
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Table 5.4 summarizes the results for the number of defects produced by each 

atom in each layer that is affected by incident 1-MeV irradiation. The initial layer to 

encounter the incident electron from the beam will be AlGaN or Si3N4 (if passivated) and 

if it is the structure with the AlN interlayer.  The initial layer will be the GaN cap or the 

Si3N4 layer above it (if passivated) for the GaN cap structure.  The number of radiation 

induced defects, for example if we consider Nitrogen, can be correlated to the NI –Vn pair 

(the Frenkel pair). The evidence of radiation induced defects was shown in the previous 

PL data, the fitted Hall carrier density and mobility data, and will be further verified in 

the DLTS, Cg-Vg and Ig-Vg data. The next section will give a snapshot of the CASINO 

results, which show the damage based on the simulated interactions for primary, 

secondary and backscattered electrons. More analysis will be given and correlated to the 

defect analysis in this research in Chapter 7. 

 

5.4.2 Location and Distribution of Damage: from CASINO 

CASINO shows the majority of the damage for an unpassivated structure is in the 

AlGaN, the first layer encountered, and the incident electron loses energy with depth as 

shown in the defect product algorithm plot of de/dx in section 5.4.1. The unpassivated 

sample has a greater range for the hits as a function of depth. The 50-nm passivated 

sample has the smallest range for hits as a function of depth. 
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Figure 5.41.   A cartoon scenario of the results from CASINO; the red lines on the upper 
right plot are the backscattered electrons. The left figure represents the distribution hits in 
the device being simulated. 
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Figure 5.42.  CASINO Monte Carlo simuations of 1-MeV electron irradiation in an 
AlGaN/AlN/GaN sample with 50 nm of Si3N4 passivation. The upper plot gives electron 
absorption as function of depth and intensity. The lower plot gives the normalized hits as 
a function of depth.  
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Figure 5.43.  XY radial energy as a function of position, showing the locus of energy 
distribution. 
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Figure 5.44 Normalized hits by 1 MeV electrons at a fluence of 108 nm-3 as a function of 
Si3N4 thickness on AlGaN (18nm)/AlN (1nm)/GaN (1700 nm). 
 

5.5.  Preliminary Conclusions and Investigative Questions Answered 

This chapter addressed the characterization and analysis of the electron transport 

in 1-MeV electron-irradiated AlGaN/GaN HEMT structures, which varying thicknesses 

of Si3N4 passivation layer. It has been shown that the radiation response from 1 MeV 

electron irradiation is Si3N4 dependent and device structure dependent for AlGaN/GaN 

HEMT’s with respect to the electron transport characteristics such as Hall mobility, 

carrier density and conductivity. Mobility models show the breakdown in the change in 

scattering mechanisms with respect to structure. Damage production algorithms 

enumerate the amount of the damage per atom per layer per structure. CASINO models 

show the distribution of hits based on Monte Carlo scattering, and where the damage is 

most probably clustered as well as how the variation of silicon nitride passivation is 

responding to the radiation.    
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VI.  Characterization of Variation of Silicon Nitride Passivation Thickness on 
Electron Irradiated AlGaN/AlN/GaN and GaN/AlGaN/GaN Electrical Properties 

 

6.1 Introduction 

HEMT degradation and failure is often manifested by a drop in current at constant 

bias conditions.  For this reason, it is important to analyze the factors involved in current 

degradation. In Chapter 2, the structure and general device physics was discussed. Most 

importantly in this was the device control for which the defects, especially the traps, 

negatively impact. The impact of defect concentration on the sample current was shown 

in Chapter 5 to correlate with changes in the Schottky barrier measurements. In this 

chapter the effects of passivation thickness and radiation on the Ig-Vg, Cg-Vg, and DLTS 

results for each structure will be looked at. Additionally, the transport property results 

from Chapter 5 (mobility, carrier density and conductivity) can be related to sample 

electrical performance via J = σE = neµE = nev, where µE is the carrier velocity.  Low 

fields exist in the region of the Ohmic contacts, i.e., source and drain regions. High fields 

exist in the region under the gate. The saturation velocity is very important to device 

performance, hence it is important to study carrier density as was addressed in Chapter 5 

and the corresponding saturation velocity. One has vlow field  = µ E and 

vsat,high field= µ E[1+(ε0 /ε )2] -2. 

As the results and discussion proceed, it must be remembered, as previously 

stated, that the structures in this study have a Schottky metal stack which are not 

functionally gates since they do not span the channel (which extends throughout the 

sample). Nor do they have a field plate. First the leakage current, Ig-Vg, will be 

considered, as it changes with passivation thickness and with irradiation, for both 
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structures. Then the same will be done with the Schottky (gate) capacitance-voltage 

behavior, Cg-Vg. A sampling of the calculated transconductance will show how the 

Schottky modulates the current under an applied gate bias. The further analysis of traps 

via DLTS will identify some of the intrinsic as well as the radiation induced traps 

responsible for the device behavior with varying Si3N4 layer thickness and radiation. 

These measurements are various forms of characterizing donor and acceptor populations; 

the results tie into and correspond to the Hall measurement and PL results given in 

Chapter 5. A unified model to explain the observed changes due to Si3N4 thickness and 1-

MeV electron irradiation will be given in the final discussion and analysis in Chapter 7.  

 

6.2. Effect of Structure, Passivation and 1 MeV Irradiation on Gate Leakage 
Current and Gate Capacitance. 
 

Both Cg-Vg-T, Ig-Vg-T as well as room temperature  Ig-Vg and Cg-Vg 

measurements were done to study the effect first of variation of Si3N4. Then with this 

variation of Si3N4 layer thickness, the effect of 1-MeV radiation at a fluence 1016 cm-2. 

The measurements were performed on both structures. The impact of variation of 

passivation layer thickness on AlGaN/AlN/GaN and GaN/AlGaN/GaN device 

performance then follows (device structure and experimental details are in Chapter 4). 

 
6.2.1.  Leakage Current Ig-Vg  

A perfect Schottky contact would have no leakage under reverse bias, which is the 

operating condition for a HEMT.  If the barrier is of poor quality, carriers can bleed into 

the insulator/semiconductor.  More typically, gate leakage is due to trap-assisted 

tunneling through the barrier to the channel, which is why leakage current needs to be 
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studied. Leakage current studies are a way to quantify damage in the structure, like trap 

assisted or defect assisted tunneling. Also it can indicate parasitic currents going to the 

gate. The effects of passivation thickness and temperature on the leakage current results 

are shown before and after 1-MeV electron irradiation. 

The room temperature Ig-Vg for both AlGaN/AlN/GaN and GaN/AlGaN/GaN 

structures are compared in Figures 6.1 and 6.2.  There are changes in the reverse bias 

leakage current that correspond to passivation thickness, but little change as the forward 

bias increases at 300 K. This would indicate that as the voltage sweeps from positive to 

negative, the trapping effects due to the thickness of the passivation, which are increasing 

the leakage current, are more profound in the negative bias. This should be identifiable 

with DLTS. 

 

Figure 6.1.  Room temperature comparison of Si3N4 passivation variation (0, 20, 50, 120 
nm) for AlGaN/AlN/GaN. 
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Figure 6.2  Room temperature comparison of Si3N4 passivation variation (0,20,50,120 
nm) for GaN/AlGaN/GaN. 
 

 

Figure 6.1 presents Ig-Vg for the variation of passivation for AlGaN/AlN/GaN and 

Figure 6.2 presents Ig-Vg for the variation for GaN/AlGaN/GaN.  Data are taken at room 

temperature pre-irradiation.  The structure with the GaN cap is more affected by Si3N4 for 

all passivation layer thicknesses in reverse bias. It exhibits a monotonic increase in 

leakage current with Si3N4 thickness that can be correlated to the carrier density for these 

structures. Therefore, the conclusion is drawn that for these structures, the increase in 

tunneling is due to the increase in carriers, which increases with the passivation layer 

thickness. For the GaN cap structures, the lowest leakage current occurred for the 

unpassivated structures. For both structures, the 50- and 120-nm reverse bias Ig-Vg are 

nearly equivalent, perhaps due to carrier saturation at 50 nm thicknesses (ICRU, 1984). 
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The carrier densities for these samples can, however, only partially explain the results for 

these passivation layer thicknesses. The 20-nm passivation thickness may contain 

pinholes, and typically shows anomalous results. The 20-nm results are not consistent 

likely due to a non-uniform distribution of pinholes.   

The average increase of the leakage current in the reverse bias region was for the 

GaN cap HEMTs between the unpassivated and 120 nm passivated structure is 28%. 

Neither structure showed a strong change in forward bias behavior with passivation 

thickness. In reverse bias, the current is being drawn to the gate area, and in the 

interfacial area between the gate and the Si3N4 passivation, there is a contribution to 

leakage current. The NIT should then be nominally similar in contribution to the leakage 

current for passivated samples. 

 

Figure 6.3. Temperature dependent Ig-Vg -T for unpassivated GaN cap sample. There is 
little temperature dependence in reverse bias, where Ig is nearly constant after pinch off. 
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Figure 6.4. Capacitance transients for the unpassivated GaN cap sample showing its 
electric field dependence for  voltage sweep from -3.0 to -3.4 V at 300 K.  
 
 

Temperature dependent measurements (100-400 K) were done for all 8 structures, 

and all showed reverse bias currents that were not strongly temperature dependent, as can 

be seen for the unpassivated GaN cap Ig-Vg–T shown in Figure 6.3. Results obtained by 

Fang and Look (Look et al, 1997; Look, 2001) on AlGaN/GaN HEMTs were interpreted 

as indicating that this behavior resulted from tunneling conduction rather than as 

thermionic currents. As in that referenced study, the forward bias currents have a slight 

kink thought to be from a low bias tunneling current. The “kink effect” has been 
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6.4 shows that these samples are, however, strongly electric-field dependent in the range 

between -3.0 to -3.4 V. This is another indicator of the strong trap presence that persists 

through a range of  applied fields.   

The capacitance transients in Figure 6.4 are for a constant tp of 10 ms with 

variation of the applied field. The higher the electric field, the greater the capacitance 

transient, implying there is greater accumulation as the field increases. For all samples, 

the leakage current is nearly independent of temperature. This is a strong indicator that 

the conduction mechanism is trap-assisted tunneling.   

Next, the post-1-MeV irradiation effects will be shown. It is known that electron 

irradiation can result in increased leakage current. The pre- and post-radiation results for 

the two structures are compared for temperatures ranging from 100 to 400 K. These plots 

demonstrate the effect of passivation in increasing the relative change in the gate leakage 

current after irradiation.  

In Figure 6.5, the lack of temperature dependence persists.  Figure 6.5 presents Ig-

Vg –T for the unpassivated GaN/AlGaN/GaN HEMT structure in the temperature range 

100 to 400 K for pre- and post-irradiation. Figure 6.6 shows the increase of the Is-Vg T 

leakage current with 50-nm passivation over the pre-irradiated for the GaN/AlGaN/GaN 

structure. It can be concluded that leakage current increases with temperature, due to the 

thermal activation of traps in the Schottky   interface area.  The DLTS trap E, which has a 

production rate of ~0.2cm-1, shown later in the DLTS section, may be the cause of the 

radiation induced leakage and is more identifiable in the AlGaN/AlN/GaN sample. 
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Figure 6.5. Temperature dependence of Ig-Vg after 1-MeV electron irradiation for 
unpassivated GaN/AlGaN/GaN. 

 

Figure 6.6. Pre(E0) and post(E1) irradiation, 50 nm Si3N4 passivated  AlGaN/AlN/GaN, 
showing the increase in post radiation leakage current(solid lines). 
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Figure 6.7 The pre (E0) and post(E1) radiation leakage current of both the AlN structure 
and the GaN cap structure for a 50-nm passivation layer thickness, showing that the GaN 
cap structure has less leakage. 
 

Figure 6.7 presents Ig-Vg for the 50-nm Si3N4 passivated HEMTs for both 

structures at 300 K pre- and post-irradiation, showing the effect of the GaN cap in 

reducing the leakage under 1-MeV irradiation. Here, the GaN cap structure appears to be 

more radiation hard. Less leakage is observed in the GaN cap structure as it has a higher 

barrier and there is less tunneling. In actual transistors, the GaN cap combined with Si3N4 

passivation has shown record output power performance and long-time stable RF 

operation (Meneghesso et al., 2009). The structures in this study are Schottky diodes. It is 

noted and important that for both structures the gate area resistance is greater than the 

channel resistance. The gate area(Schottky) resistance is given by:  

R = (Vs /µ)* (L/Vd )                                            (6.1) 

Some of the difference can be explained by the differences of the distance to the edge of  

the Si3N4 which is ~19 nm for samples with an AlN interlayer SBD but ~ 22 nm for 
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samples with a GaN cap SBD. Defects can be created near the barrier in the gate area; 

electrons can tunnel through the barrier and there can be leakage current due to tunneling 

from the hopping conduction. With the cap structure, the defects/traps introduced by 

Si3N4 are not on the AlGaN barrier, but on the top GaN cap layer. So, there should be less 

tunneling contribution to gate leakage current. There can be pre-irradiation leakage 

through  threading dislocations,which can form a conduction path as shown in Chapter 5. 

 

Figure 6.8. Si3N4 thickness variation with GaN cap pre- (E0) and post- (E1) radiation 
leakage current comparison showing a shift right E1 for the passivated structures. 

  
In Figure 6.8, a comparison of the room temperature gate leakage measurements 

for all the Si3N4 thickness are presented for before and after radiation. The observed shift 

to the right of Vg =0 for the irradiated cases (top 4 curves) is due to the available 

conduction or interface states. The radiation is shifting the threshold voltage to a higher 

bias. This is expected because the radiation changes the available conduction or interface 

states.  Also, the un-irradiated device does not have to be centered at the origin. In Figure 
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6.8, correlations can be made to the radiation induced changes for the GaN cap structure 

300 K Hall carrier density result, shown in Figures 5.14 and 5.27.   

Post-irradiation gate leakage can be caused by degradation of the Schottky to a 

smaller barrier, shown in Table 6.1 below. Irradiation can also physically damage the 

barrier by causing Schottky metal inter-diffusion.  An example of physical damage to the 

Schottky metal is shown in a close examination of Figure 3.2, where in the bias range 

between -1 to +1 the upper irradiated (E1) curves have become ohmic, perhaps due to 

damage in part of the gate. As the bias increases in both directions there is recovery, since 

the damage was confined to a small enough area.  Since defects can be created near the 

barrier (Meneghinni, 2008), electrons can then hop through the barrier allowing leakage 

from tunneling. (Petrosky et al, 2009).There can also be pre-irradiation leakage from 

dislocation damage that occurs during growth; the dislocation could be conductive. 

(Petrosky et al, 2009; Fang et al, 2009; Meneghinni, 2008). 

According to Sze (Sze and Ng, 2007), the observed post-irradiation changes in the 

forward-bias slopes Ig-Vg curves may be an indication of a change in current mechanism, 

such as diffusion vs. recombination. Forward bias current is at an almost constant steep 

slope until the applied gate voltage becomes greater than the Schottky barrier height and 

then it increases rapidly. This is observed in the Ig-Vg plots in this chapter at ~1V. When 

changes in forward bias current occur between 0 and 1 V, this is an indication of damage 

that has led to a decrease in the Schottky barrier allowing charge carriers to pass through 

more easily. Table 6.11 shows the decrease in SBD with radiation as well as the changes 

with Si3N4 concentration.  Figure 6.9 shows the additional factor of temperature in barrier 

height lowering.  
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Figure 6.9. Temperature dependent Ideality factor vs. Barrier Height. The barrier height, 
øb, and the ideality factor, n, as a function of temperature for the 
(Ni/Au)/AlGaN/GaN/SiC Schottky barrier diode (Saadaoui et al, 2011). 

 

The ideality factors and barrier heights are extracted from the pre and post 

radiation forward bias curves. The ideality factor goes down with passivation. Lower 

ideality factors indicate better performance, but they increase with radiation , except for 

the 50 nm passivation thickness, meaning that in this thicknesss other things are 

happening . Thet Hall results report this thickness is best for channel preservation, but the 

barrier height is a function of the gate current, and is taken from the intercept of the slope 

of the forward bias curve . Radiation is know to lower the Schottky barrier height by 

introducing traps with allow for hopping across the barrier and thereby effectively 

lowering it. The increase in leakage current, can be related to the additional interface 

states that passivation brings at the SB interface, thus lowering of the barrier height.   

All the samples have the same minimum gate current. The samples were exposed to the 

same dose. Based on the post-irradiation results, this says that the AlGaN/GaN material is 
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affected by the radiation as a function of the Si3N4 layer, because the barrier height is 

changing both with passivation layer thickness and radiation. A large barrier height leads 

to a small leakage current and high breakdown voltage, which improves the noise level 

and power performance of the device. 

 

Table 6.1. Pre-irradiation (E0)  and post radiation (E1) GaN cap Ideality and Barrier 
heights for GaN/AlGaN/GaN. 
 

S3iN4 Passivation 
Thickness(nm)-sample # 

N-factor (Slope) 

 
Φ barrier height 

 
 

S3iN4 Passivation 
Thickness(nm)-sample # 

N-factor (Slope) 

 
Φ barrier height 

 
 

E0 E1 

E0 E1 

0 -0707 5.80845 5.94051 10.09099 7.15112 

20-0509 5.4169 5.46359 9.73236 7.18152 

50 -0503 5.4603 5.41889 9.53705 7.12663 

120-0604 5.45793 5.50773 9.74453 6.99962 
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6.2.2.  Capacitance Voltage Cg-Vg.   

For the samples in this study, the substrate was too insulating to do a sandwich-

type capacitance measurement. The Cg-Vg was done across the top from the gate to one 

of the corner ohmics; the ohmics were designated as s1, s2 and s3.  When a gate 

capacitance measurement is made, with a reverse bias applied to the gate or in this case 

the Schottky contact, the carriers are pushed away from the gate until the area under the 

Schottky depletes. The phases the device goes through were explained in Chapter 2 in 

HEMT device physics. The Cg-Vg measurement results in this section will show how the 

capacitance changes when a reverse bias applied to the Schottky changes with 

temperature, device structure, Si3N4 thickness and 1-MeV electron irradiation.  

The Cg-Vg measurements can be generically profiled with Figure 6.10 above. For Figures 

6.12 through 6.17, the flat or “on” capacitance is when the device is in accumulation 

mode and is the capacitance of the AlGaN, equivalent to Cox in a MOS device. When in 

depletion mode the capacitance is represented by the series Ctot equations 6.2a and 6.2b. 

The value of the capacitance is due to the combined series capacitance due to the AlGaN 

and passivation layers. Repeating the equations from Chapter 2, for the AlN structure, the 

total capacitance can be defined as (Fagerlind et al, 2010): 

      Ctot = Cpass Cbarr /(Cpass +Cbarr )                            (6.2a) 

For the structure with the GaN cap it is: 

Ctot=CpassCbarrCGC/[(CbarrCGC/Cpass)+(CbarrCpass/Cbarr)+ (CpassCbar/CGC)]      (6.2b)                                              

where Ctot it is defined as a series connection of Cpass ,Cbarr   and CGC , which are the 

capacitances of the passivation layer, the AlGaN barrier and the GaN cap, respectively. 
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As stated by (Fagerlind et al, 2010), for the parallel plate calculation, these calculations 

can yield higher values than those measured because of the electron distribution relative 

to the measurement. The values will be given and discussed in Chapter 7.  
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Figure 6.10. Cg-Vg from an unpassivated sample showing the accumulation and depletion 
and residual capacitance areas. 

 

Figure 6.11. Temperature-dependent (100, 200, 300, 400 K) unpassivated Cg-Vg 
GaN/AlGaN/GaN with Ni/Au SBD. Vth shifts positive with decreasing temperature as 
device cuts off. 
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With temperatures of 300 K or above, Figure 6.11 shows that the gate capacitance 

decreases and “stretches out” in the depletion area. The threshold voltage (Vth ) shifts 

negative relative to the 100 K and 200 K as a result of less carriers. The decrease in 

capacitance is due to thermal migration of arriers away from the gate area while the 

stretch out is due to mobile interface defects/traps Nit that lower the saturation 

capacitance.  

     ( )it
it

VN C
q
∆

∆ = ,                                         (6.3) 

where C,  for the structures being studied, is a series capacitance as given in equation  

6.2a or 6.2b, and ΔVit is the shift in voltage of the depletion region of the pre- and post-

irradiation Cg-Vg curves.  It can be can be used as a measure of time-dependent radiation-

induced interface trap formation (McClory et al, 2007), which will be shown in Chapter 

7.  The interface traps cause the stretch out along the voltage axis and an interface trap 

capacitance, CNit, can be added to the total capacitance. This adds another term that can 

be added to equation 6.2a and 6.3: 

Ctot = Cpass Cbarr CNit /(Cpass Cbarr +Cbarr CNit +CNit Cpass )                                  (6.4a)     

  So now equation 6.4a can show a decreased capacitance for the AlN structures: 

Ctot=CpassCbarrCAlN CNit /[(CbarrCAlNCNit)+(CbarrCpasCNits)+ (CpassCbarCAlN) +        

                          (CpassCbarCNit/CAlN)]                                                                            (6.4b) 

However, if the measurement is done such that the capacitance of the AlN layer is not 

involved, then equation 6.4a will be the total capacitance. For the GaN Cap structures, the 

total capacitance may be defined as: 
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Ctot=CpassCbarrCGC CNit /[(CbarrCGCCpass)+(CbarrCpassCNit)+ (CNit CbarCGC) )+(CGCCpassCNits)]    

              (6.4c) 

The unpassivated AlN structure has a higher saturation capacitance, but the opposite is 

true for the GaN cap structure. Figure 6.12 shows that the capacitance decreases with 

increasing Si3N4 thickness for the structure with the AlN layer. In this case the Si3N4 

could be increasing the barrier height. It can be shown with equations 6.4b, 6.4c and 6.6 

that, an increasing dielectric thickness of Si3N4, leads to a larger depletion layer “d”, so 

that the capacitance is reduced. The saturation capacitances for the AlN structure 

respectively are: 200, 192, 191 and 180 pF, for Si3N4 thicknesses of 0,20,50 and 120 nm, 

which show a 10% decrease from unpassivated with a 120-nm passivation layer. While 

there may be more trapping at the SBD interface area for the AlN interlayer structure, it 

has a greater saturation capacitance corresponding to its higher carrier density, as 

previously pointed out.   This is shown comparatively in Figure 6.19. For the GaN cap 

structure, the capacitances are 172, 190, 183 and 178 pF respectively. The cap layer may 

mitigate some of the trapping effects at the SBD interface. Since the structure with the 

GaN cap already has a layer above the AlGaN before Si3N4 passivation, the series 

configuration is different in that case; that is, the effect of the total capping layers on the 

2DEG is what affects the capacitance. For the structure with the GaN cap, it is a 

combination of the cap and the Si3N4 that changes the 2DEG and thus the amount of 

saturation capacitance measured. The carrier density for the cap structure shown in 

Figure 6.12 below correlates to its Cg-Vg. For the structure with the AlN, the capacitance 

is measured across 2 layers in series, whereas for the GaN cap structure, across 3 layers 

in series; i.e., the Si3N4 (Cpass) and AlGaN (Cbarr) or the Si3N4 (Cpass), GaN cap (CGC) and 
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AlGaN (Cbarr), from the Schottky to the ohmic contact. Since only a portion of the 

channel is under the SBD, as shown here in Figure 6.13, there are parts of the channel 

that are not modulated by the Schottky, or they are said to be “ungated”. 

 

 

 

Figure 6.12. Comparison of Si3N4/AlGaN/AlN/GaN (IQ 15) with 
Si3N4/GaN/AlGaN/GaN (IQ 13) room temperature Cg-Vg (left). The unpassivated AlN 
structure has a higher saturation capacitance, but the opposite is true for the GaN cap 
structure. 

 

Figure 6.13. Generic AlGaN/GaN structure (not to scale) showing that some of the 
channel lies under the SBD and some is ungated.  
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While Figure 6.13 is not to scale, the Schottky (~gate) current measurements are 

for the area of the channel under the gate while the Hall 2DEG measurements are across 

the channel. With the capacitance measurements, the passivation effect is countered, as 

the passivation incorporates the traps it introduces and it is approximately equal to Cpass. 

By rearranging equation 6.4, it will be shown that the interface trap density due to the 

passivation can be calculated.  

   A possible explanation for the Vth shift of the Cg-Vg curve to the right in the 

depletion area, or more positive direction, for samples with 20 nm passivation (Figure 

6.12, lower right), as opposed to a shift to the left, or more negative direction (as for 

samples with the 50 and 120 nm passivation), is the fact that it has been observed that 

thin layers of Si3N4 tend to relax, releasing electrons and going more positive in the 

absence of the strain seen in greater thicknesses. With no strain present, the thickness of 

the layer might not be conducive to creation of trap sites. On the other hand, for the GaN 

capped sample (Figure 6.12, upper right), which has an extra layer and thus an additional 

dielectric incorporated, as in equation 6.2b, a different response is measured.  

   For structures with the AlN layer, the Cg-Vg curve shows the device moving to a 

more negative threshold for passivation thicknesses greater than 20 nm, which suggests it 

requires more of a negative bias to reach depletion. The direct correlation of saturation or 

“on capacitance” with carrier concentration is also shown for the structure with the GaN 

cap by comparison with Figure 6.19. That is, the higher the measured Hall carrier density, 

the higher the saturation capacitance. Passivation evidently reduces the ability of the 

surface donor states to provide electrons for the 2DEG as evidenced by the decrease in 

saturation capacitance with increasing Si3N4 thickness.  
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6.2.2.1 Post Radiation Effects Results 

 For the structures with an AlN interlayer, there is a temperature dependent 

positive voltage shift after irradiation, along with a stretch out of the shape as compared 

to the pre-irradiation curve, indicating the formation of radiation-induced interface traps. 

(McClory et al, 2007).  The “stretch” is in the slope of the Cg-Vg curve between 

accumulation and depletion. 

Figure 6.14 shows the changes in capacitance as the bias changes before and after 

radiation. Under high negative bias and as the current goes to zero, the electrons move up 

to the gate until the electrons are depleted, at which point the capacitance goes to zero 

and the device pinches off if there is a gate. In negative bias, the band moves up to where 

electrons are, the depletion width gets wider and the bulk causes the Fermi level to shift 

down. This makes it more attractive for the electrons to be drawn to the gate rather than 

the 2DEG.  In reverse bias, the depletion width, d, becomes infinitely large at around -3.2 

V and the capacitance (gate source) goes to zero as equation 6.6 would imply. At low 

reverse bias, the capacitance is saturated and flat due to only small changes in the 2DEG 

peak depth (Look, 1989). 

While the GaN cap structure in Figure 6.14 does not suffer from stretch out in the 

depletion area post irradiation, the lower carrier density and lower electric field (0.9 V) at 

the gate metal (Schottky) interface is less than that of AlGaN (1.5 V). The radiation 

creates acceptors which cause a loss of conduction band electrons. The Fermi level is 

lowered, which appears to raise the conduction band, as shown on Figure 6.14 on the 

right. This leads to a post radiation threshold voltage shift in the positive direction 

(McClory et al, 2007). 
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Figure 6.14 The pre- (E0) and post- (E1) irradiation Cg-Vg of 50-nm passivation layer 
thickness on the AlN and GaN cap structures shows a decrease in capacitance for both 
structures.  
 

    

Figure 6.15 presents the E1 Cg-Vg –T for the unpassivated GaN cap structure. At 

300 K, a slight change is observed in the forward and reverse sweeps; meaning there are 

traps that be detected between the forward and reverse bias sweep. Figure 6.16 presents 

0

50

100

150

200

-4 -3 -2 -1 0

 
 
 
     

E1  50 nm AlN

E0 50 nm  AlN 

E0 50 nm GaN cap

E1  50 nm GaN cap 

Vg

C(
pf

)

50 nm Comparison of C-V for E0,E1 AlN vs GaN cap



174 
 

the post irradiation (E1) Cg-Vg –T for unpassivated E1 50 nm showing annealing effects 

on the AlN sample, which are minimal. 

 

 

Figure 6.15  Post(E1) Cg-Vg  -T for unpassivated GaN/AlGaN/GaN. 
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Figure 6.16.  E1 Cg-Vg -T 50 nm with annealing effects, AlN sample at room temperature. 

  

There is very little observed annealing at 1 week after irradiation. At 300 K and 

higher, there is a stretch out of the C-V curve in the depletion area believed to be 

attributed to the thermal activation of electrons in traps at the interface.  
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Figure 6.17. GaN cap sample at room temperature; Cg-Vg comparison of  pre- and post- 
irradiation on unpassivated (left) and AlN vs. GaN cap pre- and post irradiation and on 50 
nm SiN passivated structures (right). 
  

Figure 6.17 (left) shows the room temperature change in Cg-Vg and shift to the 

right of Vth for the unpassivated HEMT, with a 53 % decrease in the saturation 

capacitance. The change post irradiation between the two 50-nm Si3N4 structures in the 

saturation capacitance differs by 57% for the AlN structure and 72% for the GaN 

structure, with the V th stretching out for the AlN structure (right). 

In Figure 6.18, the post irradiation degradation in Cg-Vg can be correlated to the 

average increase or degradation in Hall carrier density shown in Chapter 5. One theory 

about why the post irradiation Cg-Vg curves stretch out is because acceptor traps above 

the Fermi level in the GaN band gap are neutral. Radiation can change the acceptor trap 

density and location. When an applied voltage reaches depletion, the acceptor traps 
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Figure 6.18  300 K comparison of  C-V showing effect of variation of Si3N4 thickness 
before and after 1 MeV electron irradiation on GaN/AlGaN/GaN. 
  

begin to move below the Fermi level, trapping electrons, requiring greater applied voltage 

to reach the same capacitance as without them. The conduction band height relative to the 

Fermi level Ef will change as in Figure 6.14b.  

  In his research, McClory (McClory et al, 2007) concluded that positive ΔVth shifts 

(such as seen in Figure 6.17, left side) can be attributed to trapping of net positive charge 

in the interface layer. For the observed post radiation 300 K ΔVth seen in the structures in 

this study, the shift is more positive post radiation and is not correlated with an increase 

in the sheet carrier density, but may be due to the increase of shallow donors, the VN, 

which migrate and build up at 300 K. Radiation induces changes in the donor acceptor 
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interfaces. The radiation creates donors and acceptors; the post radiation decrease in Hall 

channel electrons shown in Chapter 5 is known to be caused by the radiation induced 

acceptor traps. The DLTS radiation induced trap labeled as E shown in Figures 6.33 

through 6.35 are  believed to be due to a shallow donor trap in the buffer near the 2DEG. 
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Figure 6.19.  Comparison of S3iN4/AlGaN/AlN/GaN (AlN) with Si3N4/GaN/ 
AlGaN/GaN (GaN cap) room temperature Hall carrier density. The unpassivated GaN 
cap structure (red curve at 0) has a significantly smaller carrier density than the 
passivated structures. 
 

The unpassivated GaN cap carrier density in Figure 6.19 is a decrease from that of 

the AlN structure. For the GaN cap passivated structures, the first sub-band in the 2DEG 

is believed to saturate quicker (Asgari et al, 2005) for reasons discussed in Chapter 5. But 

more importantly, the AlN has a stronger polarization contribution to the 2DEG carrier 

density. 
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It is shown in the Cg-Vg –T data of Figures 6.11 and 6.15 that the saturation (due 

to the  finite number of electrons available) capacitance decreases with temperature. 

Choosing, for a HEMT to approximate the capacitance C by: 

   C = εA/d                      (6.6) 

where d is the distance between the Schottky and the peak of the electron wavefunction, 

the change in the distance d when the structure changes can be explained.  

 

Figure 6.20. The figures above are referred to in the text and are used to explain why 
sheet carrier density and capacitance changes with a thin GaN cap (lower), as opposed to 
not having a cap layer (upper). 
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In Figure 6.20 above the “d” in equation 6.6 is increased with the addition of a 

GaN cap, thus lowering the capacitance for an unpassivated sample. This is shown in 

Figures 6.12, 6.14 and 6.17. Also, as has been explained in Chapter 2, sections 2.1.3 and 

2.1.4, the contribution to the 2DEG is decreased using equations 2.4 and 2.39.  

The electron wavefunction or carrier density ns may be derived from the 

integration of the capacitance (Sze and Ng, 2007):  

                    qns = ∫ 𝐶𝑔    𝑑
𝑉𝑔𝑠
−∞ 𝑉𝑔𝑠                               (6.7) 

      

Here 𝑉𝑔𝑠 is the gate source voltage. To obtain donor (as well as acceptor) information, 

start with the 1-dim Poisson equations (Kim et al, 2006): 

                         𝑑
2 ∅2

𝑑𝑧2
 = − 𝜌(𝑧)

Є
  , ρ(z) = e[−n(z) + p(z) –NA(z) + ND(z) ]           (6.8) 

and the above equation takes the form:  

                                        ns =Nc  ∫
2/𝜋1/2

1+𝑒(𝑥+𝑢)
𝑥1/2𝑑∞

0 𝑥                                         (6.9) 

Using equation 6.7  and 6.8 above and setting d= wd   for the depletion 

approximation, after some manipulation, carrier concentration profiles may be obtained 

through the capacitance (Look, 1989): 

                 [ND(wd) –NA(wd)]  =  𝐶3

𝑒∈𝐴2    𝑑𝐶
𝑑𝑉

                                             (6.10) 

 The three dimensional concentration obtained from the capacitance is often used as a 

rough estimate of the 3D concentration in the 2DEG. From  the peak concentration in the 
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Cg, a rough approximations of  n= ND – NA gave 2.3 x 1019 cm-3 for the GaN cap 

unpassivated structures, and 2.3 - 2.68 e19 cm-3  for the AlN  unpassivated structures.  

 

6.3.  Transconductance and Diode Measurements 

Measurements were done to see how the structure conducts across 2 opposite 

ohmics. In a typical HEMT device, the gate is much larger than the size of the Schottky 

in this study, and it would be capable of depletion a larger amount of the Ids. That is, for a 

gate, all of the current would be forced to go under it when the bias was applied, but since 

the structures have a Schottky, the current doesn’t go from drain to source, only a small 

portion, as seen below, goes under the Schottky. So the measurements below only have 

relative meaning as to the ability of the Schottky to modulate the current with no gate 

finger.  Id = Ids is the current measured between the two ohmic (corner) contacts and Ig is 

the current measured on the center Schottky dot. A Vd of 5 V was applied to one corner 

and the opposite corner was grounded.  A Vg on the Schottky was then swept from -3.2 to 

to 1.8 V. 
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Figure 6.21. GaN/AlGaN/GaN with 120-nm passivation; Transconductance (black 
curve).   
 
 

In Figure 6.21, the Transconductance can be calculated as the slope of Ids: 

                       Gm = d Ids/dVg = 1.45x10-5 A/V.                                          (6.11) 

Here A is for Amps and V is for voltage. It is because the Schottky (gate area) is so small 

that there is very little ΔIgs or change in current as the voltage applied to the gate sweeps.  

In the next two figures, measured on structures with an AlN interlayer, again there is little 

change in the current with respect to the applied gate voltage. 

In the 20 nm passivated sample, the Gm = d Igs/dVg = 2.36 x10-5 A/V, and for the 

50 nm, Gm = d Igs/dVg = 2.72x10-5 A/V. Overall, Ids did change slightly, but only by a 

total of about 0.1mA. The 50 nm sample shows the highest transconductance, as the 50 

nm passivation throughout the metrics of characterization has performed best. 
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Figure 6.22a. Post irradiation for AlGaN/GaN/GaN structure with 20 nm passivation 
Transconductance. 
 

 

 

Figure 6.22b.  Post radiation AlGaN/GaN/GaN structure with 50 nm Passivation 
Transconductance. 
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6.4 Deep Level Transient spectroscopy 

As there are traps that can be identified with DLTS current transient analysis, a 

pictorial view of trapping processes DP1 and DP2 is shown in Figure 6.23. In the ON-

state, the gate current injects electrons into AlGaN and the surface, and some of these 

electrons are trapped in this region (DP1). Some of the channel electrons are captured by 

the traps in the channel or in the buffer (DP2). On the other hand, in the VDS = 0 state, 

only the first process (DP1) occurs in both the source and drain sides. To determine the 

traps within the AlGaN and GaN, the reverse bias and filling pulse height was varied. 

 

Figure 6.23. Process used in obtaining DLTS trap peaks (from Joh and del Alamo, 2011). 

 

In the next set of DLTS, Ur is the reverse bias applied to the gate. Expressed 

differently, a reverse biased Schottky barrier on the sample is subjected to a forward bias 

pulse in order to flood the depletion region of the device with electrons, temporarily 

filling the traps in the region. Once the original reverse bias is returned to, the 

temporarily filled electrons (or holes) will be re-emitted.   
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  Having a set of the emission rate and corresponding temperature pairs, one can 

make an Arrhenius plot, which allows for the deduction of defect activation energy for 

the thermal emission process. Usually this energy (sometimes called the defect energy 

level) together with the plot intercept value are defect parameters used for its 

identification or analysis. The donor-like surface traps, that will described throughout this 

study, and which reside in the gate-drain and source-gate access regions, cause the 

majority of the gate-lag in the device.  

   The relationship between passivation layer thicknesses vs. tunneling has been 

established previously. The traps identified in the DLTS that are believed to be causes for 

the leakage current, such as trap E, will be the trap sources for tunneling and will allow 

for the tunneling shown in Figure 6.24; this trap is also associated with the barrier height 

reductions given in Table 6.1. The tunneling current can be described by the overall 

leakage current through the tunneling/emission rate R(Ф) in general as (Sathaiya and 

Karmalkar, 2006):   

                      J=   𝑞
𝐸 ∫ 𝑅0

–Ф (Ф)𝑑Ф                                                       (6.12) 

 Trap assisted tunneling (TAT) has been well described by (Petrosky et al, 2009; Sathaiya 

and Karmalkar, 2006) and known to be a source of  leakage current in AlGaN/GaN 

HEMT’s. Figure 6.25 shows the where traps are located, whether bulk or surface states 

(which includes the interface states).   

         Using a basic AlGaN/GaN band structure, a possible scenario for the tunneling is 

shown below in Figure 6.24. The traps are below the AlGaN surface at energies of ~ 1eV, 

and with a density of 2x1012 cm-2 (Look et al, 1997; Look, 2001; Fang et al, 2009). At a 
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temperature in the vicinity of 400-500 K for the DLTS measurement, for passivated 

samples as well as unpassivated, and the main trap H1, is intrinsic and thought to be due 

to threading dislocations (Fang et al, 2009).  The effects of these hole like traps and their 

variation with Si3N4 thickness, is shown in Figure 6.26. 

 

Figure 6.24. Band diagram of the tunneling from surface states. 

 

 

Figure 6.25. Trap sites and hopping in AlGaN/GaN. 

 

    The previously shown Schottky (gate) leakage and capacitance currents in this 

chapter can be attributed to mechanisms such as trap assisted tunneling and defect 

assisted tunneling, that are accomplished through hopping mechanisms as in Figure 6.25 

(right) (Kim et al, 2006). It is thought that GaN layer threading dislocations, as well as 

traps within the AlGaN barrier facilitate tunneling through the barrier. The threading 
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dislocations are associated with the YL shown in the PL in Chapter 5. The extended 

defects (Sathaiya and Karmalkar, 2006) shown in the DLTS traps are identified through 

the trap dependence of tp as seen in Figure 6.32.  It is the reverse bias leakage current that 

is associated with tunneling, where Kim et al. (Kim et al, 2006), further attributes it to the 

metal contact Ni on the AlGaN’s dislocation interface states and perhaps to nitrogen 

vacancies, VN. The nitrogen vacancies complex with Mg to form the BL at 3.0 eV in the 

PL. The main radiation induced defect is the VN. Its radiation induced increase is shown 

in the post radiation BL increase in peak (Figure 5.46). From DLTS data, it will be shown 

in Figures 6.30 through 6.32 that increases in post radiation leakage current and threshold 

voltage shifts result. For samples such as the ones in the study with Ni/Au Schottky 

barrier diodes and an AlN/Al0.25Ga0.75N structure, Huang et al. (Huang et al, 2009), has 

attributed leakage current to threading dislocations.  

Figure 6.26 shows trap H1 persists through all Si3N4 passivation layer thickness as 

well as changes in applied bias from -2.0 to 0.5 V.  This is an indicator of hole like traps 

and is in agreement with the hole traps found previously (Meneghinni, 2008; Fang and 

Look, 2005). As an edge dislocation, found in n-GaN that is grown nitrogen rich, it is 

believed to cause a line dislocation terminating as an acceptor type defect or the VGA that 

is part of DAP in the YL at 2.2 eV  
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6.26. Left: Temperature dependent GaN /AlGaN/GaN DLTS as a function of Si3N4, 
showing the persistence of “hole like” traps. Right: Temperature dependent 
GaN/AlGaN/GaN DLTS spectra as a function of a filling pulse for an unpassivated 
sample with variation of the applied field from 0.5 V to -2.0 V. 
 

in the photoluminescence. The transition is believed to be VGA –>O, or VGA ->SiN , the 

latter transition the most likely.  The effect of the Si3N4 passivation layer thickness, as 

previously discussed, brings additional trapping. In Figure 6.27, perhaps the reservoir of 

hole like traps has not been depleted. A stronger reverse bias defines the” hole-like” traps 

better, at around 450 K. These are thought to be intrinsic and due to threading 

dislocations. 
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Figure 6.27 Pre –irradiated, unpassivated DLTS GaN/AlGaN/GaN structure for which the 
contacted ohmics where varied, as well as the reverse bias.  
 

The persistence of  a negatively going DLTS signal, thought to be due to hole like 

traps, is shown in both the AlN structure and the GaN cap structure, again believed to be 

of intrinsic nature due to threading dislocations. While this is n-GaN being looked at, if it 

was grown nitrogen rich as opposed to gallium rich, we could expect to see such traps in 

the lattice. Figure 6.28 is a comparison from Saadaoui et al. (Saadaoui et al, 2011) on 

“hole like traps”. This defect is ~ 0.75 eV below the Fermi level.  
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Figure 6.28 . H1 hole trap that is believed to be the cause of tunneling at the Schottky 
Ni/AlGaN interface (from Saadaoui et al, 2011). 
 

This H1 trap at the Ni/Au interface exists intrinsically in the AlGaN and is linked 

to VGA. As discussed previously, tunneling through traps at the metal/SC interface is a 

source of intrinsic leakage current in AlGaN/GaN devices. Post radiation, as it does pre 

irradiation, it complexes with the SiN that forms the YL. The radiation induced PL peak 

change is not as great as that for the BL, associated with VN, because the radiation 

produces more VN than VGA.  

  Trap Ax is associated with the nitrogen interstitial, NI, a radiation induced deep 

acceptor trap with energy ~1.2 eV; this trap is attributed to leakage current and negative 

threshold voltage shifts. It is believed to exist in the AlGaN region. The C traps are in the 

area attributed to N vacancies (VN) and are believed to be associated with the complexes 

formed with VN. 1 MeV electron irradiation produces a Frenkel pair, mentioned earlier.  
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The next two DLTS figures show other VN complexes described in the PL models in 

Chapters 5 and 7. 

Figure 6.29. AlGaN/AlN/GaN Pre-irradiation (E0) vs. post irradiation (E1) DLTS for 50 
nm Si3N4 passivation showing radiation induced traps.  EI=electron irradiation. 
 

 Trap E, VN, is in the GaN buffer region and has an activation energy of ~ 0.13 eV. 

It will be shown in Chapter 7 that it is a combination of two traps of 0.06 and 0.07 eV 

activation energies. As a radiation induced shallow donor, it is likely the cause of the 300 

K positive interface charge build up given in TAT models. It can be linked to the positive 

threshold voltage shift seen in many of the samples and by the research of others such as 

J. McClory. Trap D, with an activation energy of ~0.25 eV, is also in the buffer region. 

Traps E and D are believed to cause leakage current and threshold voltage shifts. Traps 

that are in close proximity to each other can be linked to associated complexes. These 
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traps have correspondence in PL and likewise impurities in close proximity can be 

involved in a known complex in a PL transition, such as the transitions associated with 

the YL and BL. This can further be verified with their formation energy ET. If the DLT 

capture cross section is included, the then these trap energies are the equivalent those in 

the PL for VN. With traps E and Ax, the DLTS may be showing the radiation induced 

DAP or the N-Frenkel pair. 

Figure 6.30 Same sample as above, E1, 50 nm, RT annealed, showing observation of 
traps is affected by starting conditions. Change in DLTS features at low temperature (4th 
run), showing clear D trap and part of E trap. 
 

 

Figure 6.31 shows that traps A, D and E from the previous Figure 6.30 have not 

annealed out after 1 week at room temperature. Trap E and all peaks in that area are 
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associated with Vn . The other peaks in that E trap area are associated with the 

complexing with Vn , as discussed in the previous paragraph. The Vn complexing is 

shown and explained in the Pl results in chapter 5 and analysis in chapter 7. Figure 6.32 

is the same as Figure 6.31, but shows the observed traps A, E and D as a function of 

variation of tp, resulting in settlement of defects in the sample. It can be concluded that 

these traps have some association with extended defects, for which there are references to 

in the literature (Saadaoui et al, 2011). 

 

 

Figure 6.31. The persistence of the A and D trap in irradiated 50 nm passivated  after a 1 
week room temperature anneal for AIN sample, through multiple runs and ohmic 
configurations.  
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Figure 6.32.  Dependence of DLTS signal on the tp, which indicates an association of 
these traps (Ax and D) with extended effects. 
 

 The unpassivated GaN cap sample shows fewer of the trap features, but in 

general, the traps shown are due to a number of measurement parameters. If the reasons 

are other than variation of measurement parameters, the observed traps could be due to 

radiation induced compensation, more likely to happen in the unpassivated GaN cap 

sample. It is also possible that the unpassivated samples encounter more damage to the 

SB metal, and some of the SB modulation that is needed to get good DLTS peak 

formation is lost due to radiation damage. Certainly the Casino models in Figure 5.51 

show the unpassivated samples encountering more radiation intensity than the 

unpassivated samples. Notice that the unpassivated GaN cap has the radiation induced 

nitrogen interstitial but not the VN that was shown for the previous AlN sample DLTS. 
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This could be due to the reasons just stated, or the fact that there is less VN formation 

with a cap structure without the extra Si3N4 passivation. The AlN samples show more 

post radiation leakage current traceable to their associated DLTS. Figure 6.34 shows that 

NI is radiation induced. 

 

 

Figure 6.33.  Unpassivated GaN/AlGaN/GaN E1 showing what is believed to be the 
radiation induced nitrogen interstitial at Ax. The various sx runs are for changing the 
probe location on the corner ohmics, where x =1, 2, 3 and the order of the run is indicated 
also. UR is the reverse bias current.  
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Figure 6.34. Unpassivated GaN cap E0 and E1 comparison showing radiation induced 
nitrogen interstitial at Ax. 
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VII.  Analysis and Discussion 

 

This results shown in chapters 5 and 6 reported the damage due to 1.0 MeV 

electron irradiation as a variation of Si3N4 passivation layers on two AlGaN/GaN HEMT 

structures. The fluence was 1x1016 electrons/cm2 .The change in transport properties, 

photoluminescence, leakage current and capacitance voltage was studied to see how they 

affected these structures. 

For the electrical transport mechanisms as measured by a Hall system, the use of 

Si3N4 prior to electron irradiation, the results and effect depended on the Si3N4 thickness 

layer and the particular device structure.  The questions addressed where what was the 

effect of the Si3N4 layer and what was the effect of radiation. It was determined that 

electrons populating the 2DEG are from surface donors, according to the charge balance 

equation, now restated: 

    σsurface + σ AlGaN   = q ns                                                     (7.1)                                                                                                       

Consequently, passivation will affect the balance as shown in equations 5.6 through 5.10. 

1 MeV affects both the sheet charge density and alters the doping profile by changing the 

acceptor and donor populations, but introduces scattering centers that bring the mobility 

down.  

With both the sheet charge density ns and the mobility µn degraded as shown in 

the experimental results throughout chapter 5, the channel conductivity goes down and 

resistivity increases. Based on the results of this study, the Si3N4 changes some aspects of 

device performance positively and some negatively. The passivation can prevent virtual 

gate formation, but it also introduces more scattering defect centers and Schottky metal/ 
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semiconductor interface traps that provide pathways to facilitate hopping conduction 

across the barrier and thus leakage current. It also has an effect on the electric field, due 

to the total charge balance changes .Given a fully functional transistor, a tradeoff can be 

made as to leveraging the protection provided by the passivation versus the additional 

gate leakage current introduced. Well-designed HEMTs will not has as much leakage 

current in baseline characterization measurements. However, even with transistors that 

measure as having much better n factors, intrinsic and radiation induced defects limit 

their lifetime and reliability. An analysis of the interrelationships between the intrinsic 

and extrinsic factors can facilitate a move toward achieving the balance for more reliable 

and efficient devices.  

Even with a well-designed structure, there are still material and thermal limiting 

factors to performance, lifetime and reliability. This was shown in chapter 3, Figures 3.2 

through 3.7. The as grown traps, defects and impurities change the way the device is 

ideally designed to operate. An analysis of the radiation induced damage in terms of how 

these traps and defects affect the observed changes as already been shown in the altered 

charge balance equations.  

AlGaN/GaN HEMTs are field effect devices exhibiting strong fixed polarization 

charge at the AlGaN/GaN interface. Using Gauss’s equation to examine the regional 

charge distributions by region of the device, as in Figure 2.3, the electric field change by 

region be seen and how it changes with passivation and radiation. Changes in the charges 

that sum this net charge brought about by the passivation and radiation induced traps, 

which carry their own differing charges and energies can help explain the radiation 

induced changes that degrade or preserve. Reducing or preventing virtual gates and 
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current collapse, is one of the reasons why Si3N4 is currently used. Varying the thickness 

of the Si3N4 on AlGaN/GaN HEMTs under 1 MeV electron irradiation is novel research 

which gave insight as to whether the thickness of the passivation layer made a difference 

or was important.  

Previous references were given on studies which show how structural parameters 

affect the 2DEG; and this has been shown throughout the results in this study. The two 

structures used were AlGaN/AlN/GaN and GaN/AlGaN/GaN. The use of a GaN cap as in 

GaN/AlGaN/GaN has shown to prevent current collapse. The cap acts as a surface -

charge control layer. It screens the 2DEG from surface traps by reducing the effect of 

surface polarization whereas an AlN interlayer adds to polarization. With the AlN 

structure, since the polarization vectors associated with the charge from the AlN are in 

the same direction as the AlGaN, the induced field that produces the 2DEG is greater 

relative to a structure without an AlN interlayer.  As a result, there will be more transfer 

of charge and thus more electrons in the 2DEG. Additionally when Si3N4 is added as a 

passivation layer, this increases the sheet charge density.  

The monotonic increments of carrier density with passivation thickness indicates 

that Si3N4 does affect surface states and that these surface states are donors. The change 

in the saturation capacitance as it relates to the change in the corresponding carrier 

density further verifies the effect of Si3N4 on the surface states. The effects are Si3N4 

thickness dependent.  

The radiation interacts with the shallow impurities in the ED level under the 

conduction band and brings about a post radiation changes in the Pl. The  post radiation 

changes result from transitions that involve complexing with these impurities.These 
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impurites are believed to be the source of the unintentional doping in n-AlGaN/GAN. 

Another conclusion is that the displacement damage, or more specifically radiation 

induced acceptors,  are the main source of the device degradation and is verified by the 

various methods of characterization.  

Chapter 5 results relate to chapter 6 results. The results that  report the type of 

changes occurring with the 2DEG as a function of Si3N4 layer thickness post radiation 

that show the radiation response is Si3N4 layer thickness dependent. They correspond to  

but differ from changes in the schottky leakage current and capacitance measurements. 

When measuring the 2DEG channel, the increased passivation provides a sheild against 

radiation, and Casino models shows in Figure 5.44 that at least for 50 nm passivation the 

range of hits is reduced. The increase in passivation layer thickness however, with the 

extra radiation induced defects, as shown in Table 5.4.  

Studying the variation of passivation layer thickness can give an insight of the 

surface states as well as interface states and their associated traps that can degrade 

performance prior to irradiation. Studying this the post irradiation changes show changes 

in doping density that electrically change the device. With the results from the 1.0 MeV 

irradiaton damage, ,a template can be derived  for the performance limiting  traps and 

defects in a spaceborn, radiation intense environment. Trapping effects keep a device 

from functioning in the manner for which it was designed to perform. They divert current 

from its intended path by mechanisms such hopping conduction and then tunneling that 

increase the gate leakage current, and then furhter change the power requirements for 

switching the device off and/or on. 
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Hall measurements show the GaN becoming more p type in the AlN structure at 

room temperature, due to the radiation induced creation of acceptors. There is then both a 

decrease the 2DEG sheet charge density and mobility, mitigated to some degree with an 

optimun passivation layer thickness.  

Analyis and conclusions for each method of characterization for which results 

were given in chapters 5 and 6 will be given and  which include analysis and discussion 

to  the investigative questions to be anwered by this dissertation research. The 

investigative questions to be answered are: how do the response of the transport 

characteristics (such as the mobility and carrier density) and gate current measurements 

under 1.0 MeV electron irradiation depend on the particular device structure and the 

Si3N4 passivation thickness layer.  

   

7.1.  Conclusions on the Radiation Effects and Si3N4 Thickness on Hall Transport 
Mechanisms  

The analysis of the effect of Si3N4 layer thickness and post irradiation observed 

results will be given in this section. For both structures, this will include an analysis of 

the carrier sheet density, pointing out the differences in the electric field, the mobility 

models,  mobility as relates to sheet carrier density, the charge balance model, and then 

the overall Hall carrier transport analysis.  

 

7.1.1.  Modeled Sheet Carrier Density and Electric Field Height 

In chapter 5 the conduction band diagrams and electron 2DEG densities were 

modelled for each structure and then with changes with 50 nm passivation layer thickness 
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.The differences in 2 DEG sheet charge densities are structure dependent, as was shown 

throughout chapter 2. This was defined in equations 5.6 through 5.10 charge balance 

equations that gave the sum of the charges that cause population of the 2DEG. Other 

factors leading to the change in sheet charge density due to structure are the change in ϕs , 

ΔEc , and the changes in σ that change the electric field effect shown in equations 2.33 

thorough 2.36. 

Along with the variation of carrier density due to structure there are changes in 

the fixed electric field the either the AlN/GaN interface or AlGaN/ GaN interface. This is 

shown in the modelled differences in electric field, Figure 7.1. The AlN structure on the 

left shows a higher field, as would be expected due, to the additive polarization vectors 

effect of the interlayer. The GaN caps lower field is due to the polarization vectors going 

in opposite direction.  
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Figure 7.1.  Modeled electric field is higher at the AlGaN/GaN interface for the AlN 
structure on the left and the GaN cap structure on the right resulting in a higher 2DEG 
sheet charge density. 
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The differences in sheet charge density were shown in chapter 5, Figures 5.4 

through 5.14, for the changes in structure. Applying Gauss’ law, equation 2.8, to the 

interface areas, and applying equations 2.9 and 2.10, the observed differences in carrier 

density can be explained. Figure 7.1 shows that the field and thus the effect is different at 

the 2DEG interface when the structures are different.  
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Figure 7.2.  Carrier density as a function of temperature before (E0) experimental and 
modeled on the left the post irradiation (E1) on the right.  
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As opposed to the modeled, the experimental temperature dependent carrier 

density shows little temperature dependence until 300 K, where the Fermi distribution 

function for impurities and defects has a temperature dependence, in equation 2.38. At 

300 K the thermal velocity of electrons contributing to the Hall measurement are 

thermally activated and can travel distances of tens of nanometers, thereby changing the 

density of the channel electrons.  

Since the source of the 2 DEG electrons are the AlGaN surface states, then a 

corresponding decrease in the 2DEG sheet charge density would mean a decrease in 

surface donor states that could be the result of  a large amount of acceptor states being 

created by the radiation. Effectively, the doping density for an n-GaN structure is 

changed by the radiation.   

For the cap structure, the decrease in 2DEG sheet density with the comparatively 

greater separation between it and the 2DEG interface may be a factor that modifies the 

electron scattering mechanisms, and thus the mobility, as compared to the ALN structure.  

For the the temperature dependent sheet carrier densities shown in Figures 5.26 and 5.27 

the GaN cap in GaN/AlGaN/GaN cap lowers the 2DEG as compared to the 

AlGaN/AlN/GAN for some of the reasons just stated . Since the scale on which the 

results is plotted is very fine, the changes in carrier density are not as large as the 

accompanying mobilities discussed in the next section. There is dependence of the 2DEG 

in the GaN/AlGaN/GaN heterostructure on both the GaN cap and the Si3N4 thickness.  

Looking at Figure 5.12 and the carrier density given by equation 2.39 in chapter 2, a 

conclusion can be drawn about effect of the cap in lowering the sheet carrier density; it is 

due to the ϕs  term being subtracted in the sheet charge ns equation. The ϕs in the GaN cap 
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structure is a result of the oppositely aligned polarization vectors at the GaN/AlGaN 

interface. 

Post radiation DLTS defect analysis shows the beam is both destroying and 

creating donors (E trap) and creating acceptors (A traps). If it is creating acceptors in 

GaN, the 2DEG competes with acceptors and the σsurface,E1 term is equation 5.12 

decreases. Or if it is destroying surface donors, the σBuffer,E1 term in equation 5.12 

increases; this would be destroying donors that are providing electron carriers for the 2 

DEG.  

 

7.1.2.  Charge Balance Model for Sheet Carrier Density 

Using equations 2.35 and 5.13, a model for the 2 DEG sheet charge for a structure 

with AlN is: 

σpz,AlGaN  + -σpz, AlGaN  +  +σAlGaN + σBuffer + σ surface + -σ AlGaN  +  +σAlN  +σpz, AlN  + -σpz,AlN    

                                                                                 = q ns,AlGaN/AlN                                                  (7.2) 

Which is combined equation in 2.37 that incorporates the conduction band offset of AlN 

/GaN: 

                          ns,AlGaN/AlN = 
σ𝐴𝑙𝐺𝑎𝑁 ∗𝑡𝐴𝑙𝐺𝑎𝑁+σ𝐴𝑙𝑁 ∗𝑡𝐴𝑙𝑁    −𝜀 𝜀0  𝜑𝐵   

𝑞 + 
𝜀0𝜀 (  Δ𝐸𝑐,𝐴𝑙𝐺𝑎𝑁    )

𝑞2

𝑡𝐴𝑙𝐺𝑎𝑁  +  𝑡𝐴𝑙𝑁   +  𝑑0
    

                                            = 
σ𝐴𝑙𝐺𝑎𝑁 ∗𝑡𝐴𝑙𝐺𝑎𝑁−    𝜀 𝜀0  𝜑𝐵   

𝑞 + 
𝜀0𝜀 (  Δ𝐸;

𝑐,𝑒𝑓𝑓  )

𝑞2

𝑡𝐴𝑙𝐺𝑎𝑁  +  𝑡𝐴𝑙𝑁   +  𝑑0
                               (7.3)                          

Using 5.14 correspondingly for the structure with the GaN cap, which has less of 

a sheet carrier density compared to the AlN structure: 
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σpz,AlGaN  + -σpz, AlGaN  +  +σAlGaN + σBuffer + σ surface + -σ AlGaN  +  -σCap  +σpz, Cap  + -σpz,Cap  

                                             = q ns,Cap(𝜑𝐵 )                                                                                          (7.4) 

With setting the right hand side of the equation to the calculated sheet carrier density in 

equation 2.39:                                

                               ns,cap   = 
σ𝐴𝑙𝐺𝑎𝑁 ∗𝑡2+𝑡1−

𝜀 𝜀0  𝜑𝐵 
𝑞

𝑡1 +𝑡2  𝑑0
                                                            (7.5) 

A distinction can be made based on how equation 7.3 changes with a conduction 

band offset and equation 7.4 changes with its surface potential. After irradiation, from 

equation 5.11 the charges most affected by radiation are: 

                           σAlGaN + σBuffer + σsurface + -σAlGaN                                                         (7.6) 

Using the calculations leading up to equation 5.13, the post irradiation irradiated charge 

balance equation for a passivated AlN structure will be: 

  q ns,AlN  - ΔσAlN,E1 = q ns,AlN,P,E1   =   q ns,AlGaN/AlN                                 (7.7)      

which would include the ΔEc  as well changes in ϕB 

For the  GaN cap structure, the post radiation passivated sheet carrier density can 

be expressed as: 

                              q ns,Cap  - ΔσCap,E1 = q ns, Cap(𝜑𝑠 ) ,P,E1                                          (7.8) 

Equations 7.7 and 7.8 would include the donor and acceptor population changes. NA and 

ND shift in the charge balance relationship in equation 7.6 due to irradiation and are 

incorporated in the charges. The increased acceptor charges would be negative and thus 

decrease the  sheet charge density qns as well as  all observed results that contribute to q 

ns. 
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7.1.3.  Mobility Analysis 

As has been cited in previously in Chapters 3 and 5, the high energy electron 

irradiation experiments by D.Look et al (Look, 2001) that revealed the creation of 

shallow donors as well as deep shallow acceptors. These defects create scattering centers 

and thus decrease the net mobility. The scattering is coulombic and occurs mostly outside 

the 2 DEG region, which is very thin and won’t contain many defects.  

Referring back to Figures 5.24 and 5.25, the decrease in mobility for all 

passivation thicknesses is due to fact that the acceptor type defects (charged) that are 

created by the 1.0 MeV electron irradiation scatter more than the donor type (which are 

neutral). More acceptors than donors are created. The just discussed carrier density 

decreases with irradiation because of the creation of these acceptors which compete with 

the 2DEG carriers. The post radiation reduction in mobility should be linked to post 

radiation carrier scattering mechanisms by way of equation 5.16. The additional radiation 

induced scattering in equation 5.16 is due to increased ionized impurity scattering (Look, 

2001) and displacement scattering. The defects are created mostly in the AlGaN 

(McClory, 2008) where thought to be acceptor type or N vacancies VN, as the minimum 

displacement energy for N is lower than Ga. However, the VGA acceptor defects are the 

ones created in the bulk and that take away from the 2DEG. The N interstitials are the 

other part of the Frenkel pair resulting from the displacement of a nitrogen lattice atom 

and form the deep traps that increase trap assisted tunneling of the gate currents through 

the Schottky and AlGaN barriers and lead to a leakage current. This will be discussed 

further in section7.5.The photoluminescence and DLTS will further identify these 

defects.  
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In the room temperature results in Figures 5.1 and 5. 4 in chapter 5, the GaN cap 

in GaN/AlGaN/GaN raises the mobility at 300 K relative to the same structure with no 

GaN cap, as Figure 2.10b. It is believed that because the 2DEG wave function lies very 

close to the AlGaN/GaN interface, Figure 7.3b, the electrons are susceptible to any 

physical processes occurring at the interface, such as roughness scattering. The AlN 

separates the 2DEG wave function from the interface to a greater degree 7.3a, but the cap 

yields less electrons Figure 2.11 and equation  2.35, and thus less electron-electron 

scattering within the 2DEG quantum well. The comparison can be made a structure with 

AlN vs no AlN structure, as in Figure 7.3. 
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Figure 7.3.  The first and second modeled 2DEG wavefunctions. The left side has a 
spacer which is equivalent to an AlN, and the right side has no spacer and therefore its 
first wave function touches the barrier and introduces additional scattering.  
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In Figure 5.1, the mobility decreases at 20nm, is approximately the same at 50nm 

and increases for 120 nm with the use of a GaN cap as compared with samples without a 

cap. The increase or saturation level effect may be explained by the number of fully 

occupied or partially occupied subbands. Sheet carrier density saturation occurs at 50nm 

with an AlN structure and due to processing variability’s, as early as 20 nm of Si3N4 

passivation, for a GaN cap structure. With the GaN structure, shown again in Figure 7.4, 

with 50 nm passivation thickness, there is a combined 52nm above the AlGaN. As shown 

in the GaN cap carrier density data, in going over 50 nm passivation layer thickness, 

saturation occurs.  
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Figure 7.4. The comparison between pre and post radiation in a GaN cap sample, 
showing at 50 nm passivation thickness the sample has mobility of ~1500 cm2/V-S post 
radiation. 
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7.1.3.1.  Mobility Fits and Modeled Scattering 

The dominant scattering mechanism at 300 K is phonon scattering, in particular 

polar optical, whatever the structure is, Figures 5.5 through 5.9. For the capped structure, 

only the intrasub-band scattering within the 1st sub-band is important in the room 

temperature polar optical phonon scattering mechanism. In addition to increasing the 

sheet carrier density, increasing of the thickness of the S3iN4, which may also be 

increasing tensile strain, leads to decreasing mobility.  
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Figure 7.5. E0 mobility, modelled vs. experimental mobility for AlGaN/AlN/GaN on the 
top, the E1 total mobility as a function of scattering mechanisms on the bottom. 
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In Figure 7.5 (top), the modeled mobility incorporated the scattering mechanisms 

given in Table 5.1. The modeled mobility is lower and more temperature dependent than 

the experimental because it assumes a higher contribution from the scattering 

mechanisms. In Figures 5.5 through 5.9 the modelled changes in scattering mechanisms 

as a function of structure variation was shown. In Figures 5.5 and 5.7, because of the m-2 

relationship these scattering mechanisms have to the total mobility, alloy scattering in the 

structures with an AlN is only a fraction of its contribution as compared to the GaN cap 

structures in Figures 5.10 and 5.11, where it is a large contribution. With passivation on 

the AlN structure it nearly disappears until 310 K is reached, but it continues to be a large 

contribution to the scattering in the passivated GaN cap structure. The passivation layer 

eliminates much of the ionized background scattering both structures. Ionized impurity 

scattering is decreased with passivation for the AlN structure but changes only slightly 

for the GaN cap structure. Acoustic phonon scattering is greater in the AlN structure than 

the GaN cap structure, but passivation reduces it for the former and increases it for the 

GaN cap structure. So knowing how passivation changes selected scattering mechanisms 

and thus the total mobility, one can determine how to engineer a structure to control the 

mobility.  

Post irradiation, taking into consideration the additional scattering centers created 

by the radiation, the components of the total mobility µc given in equation 5.1, τ-1 dis  as 

well as τ-1 ii , would be increased and therefore the mobility decreased. Figure 7.5 

(bottom), for an AlGaN/AlN/GaN structure shows that now ionized impurity scattering 

the biggest contribution to the modeled post irradiation mobility. The ionized background 

scattering has also increased. 
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The post irradiation Pl measurements can explain the post irradiation Hall 

measurements. The post irradiation photoluminescense spectra qualitatively show the 

increase in VN and VGa, acceptor scatterers, and the Hall data quantitatively verifies this 

by showing a decreased sheet carrier density as well as decreased mobility. There is more 

post radiation scattering since the acceptor type defects (charged) that are created by the 

1.0 MeV electron radiation scatter more than the donor type defects (which are neutral). 

More defects are likely to be created in the AlGaN. The minimum displacement energy is 

Ed = 66 eV for nitrogen and Ed = 38 eV for gallium so more gallium vacancies are 

created. In addition to changing the Hall measurements, radiation induced acceptors form 

the deep traps that increase trap assisted tunneling in the Schottky (gate) currents and lead 

to leakage current. This will be discussed in the Ig-Vg and DLTS analysis.  

 

7.1.4.  Overall Hall Carrier Transport Measurement Analysis 

In the previous chapters it was shown that the 2DEG gets its electrons from the 

AlGaN surface, and that Si3N4 increases the net positive charge that populates the 2DEG 

in the charge balance equation. This is because more donor electrons are available to be 

transferred to the channel. Studies (Kordos et al, 2006) have shown the effect of increases 

in tensile strain are equal to the increases in sheet carrier density. This would fit into the 

charge balance model, because strain translates into piezoelectric charge.  

So the observed conclusions for carrier density changes due to passivation layer 

thickness are compounded with the tensile strain; there appears to be a linear increase in 

the carrier density for thicknesses over 50 nm pre radiation. Post radiation there is a 

significant loss of electrons due to the creation of acceptor sites in the unpassivated 
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sample, while there is a preservation of the carrier density for the passivated samples. 

There are polarization induced fields in the GaN cap, AlN, AlGaN and the Si3N4 that can 

be additive if parallel or that can be anti-parallel, which all effect the charge balance 

equation model. 
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Figure 7.6.  RT Changes in (a) mobility, (b) carrier density and (c) conductivity as a  
function of silicon nitride thickness before (E0) and after 1 MeV electron radiation (E1).   

  

The unpassivated sample in Figures 7.6 shows the degradation of the transport 

properties of the AlGaN/GaN structure under 1 MeV electron irradiation (E1) at a fluence 

of 1016 cm-2 at room temperature.  In Figure 7.6a, with a 300 % improvement in mobility 

for the 120 nm sample and a 314% improvement for the 50 nm sample over the 

unpassivated sample, a claim can be made for substantial improvement and preservation 

of the device. Figure 7.6 c shows that the conductivity improvement is approximately a 

factor of 8 in the 120 nm over the unpassivated sample. A silicon nitride thickness of at 

least 50 nm is needed to gain the improvement in conductivity, whereas for carrier 
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density a 20 nm thickness brings about improvement. Figure 5.26 shows the decrease in 

mobility due to irradiation in the unpassivated E1 at low T is a factor 31 while that in 

1200 E1 (120nm) passivated is less than 2.  The Table 7.1 below are the source of the 

data for the conclusions shown in Figures 7.6.  

Table 7.1.  Summarized averaged Hall system results radiation effects on the AlN 
structure. 
Sample  position  Nitride 

thickness  
Irradiation 
dose  

Mobility at 
300 K  

Concentration 
at 300 K  

Conductivity 

0E0  (07,06)  0 Å  0  1620  1.30 x 10
13

  3.54 

0E1  (07,06)  0 Å  10
16

 cm
-2

  290  0.71 x 10
13

  .387 ↓89% 

200E0  (05,06)  200 Å  0  1320  1.43 x 10
13

  3.25 

200E1  (05,06)  200 Å  10
16

 cm
-2

  550  1.19 x 10
13

  1.09↓66% 

500E0  (05,02)  500 Å  0  1595  1.29 x 10
13

  3.39 

500E1  (05,02)  500 Å  10
16

 cm
-2

  1200  1.21 x 10
13

  2.37↓30% 

1200E0  (07,04)  1200 Å  0  1355  1.44 x 10
13

  3.2 
1200E1  (07,04)  1200 Å  10

16
 cm

-2
  1150  1.40 x 10

13
  2.49 ↓22% 
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Table 7.2 Summarized averaged Hall system results radiation effects on the GaN cap 
structure. 
Sampl
e  

Wafer = 
IQ13/quadran
t 
/Sample count 

Nitride 
thicknes
s  

Irradiatio
n dose  

Mobilit
y at 300 
K  

Concentratio
n at 300 K  

Conductivit
y at 300 K 

0E0  0 0 Å  0  1830 1.150 x 1013  3.365 

0E1  0 0 Å  1016 cm-2  1016, ↓ 
45% 

1.071 x 1013   , 
↓ 24% 

1.425 ↓ 57% 

200E0  200 200 Å  0  1547 1.42x 1013  3.5 

200E1  200 200 Å  1016 cm-2  695 ↓ 
55% 

1.23 x 1013  .865 ↓  75% 

500E0  500 500 Å  0  1423  1.45 x 1013  3.31 

500E1  500 500 Å  1016 cm-2  1096 ↓ 
23 % 

1.31 x 1013 
10% , ↓ 

2.383 ↓ 28% 

1200E
0  

1200 1200 Å  0  1410 1.37 x 1013  3.145 

1200E
1  

1200 1200 Å  1016 cm-2  1007.6 
↓13.7% 

1.29 x 1013  , 
↓6% 

2.1 ↓33% 

 

Summarizing averaged Hall system results radiation effects on the GaN cap structure. 

1. Number of defects created based on changes in carrier density before and after 

radiation are: From 1.150 x1013cm-2 to 1.071 x1013cm-2 means there was an electron 

loss of   0.079 x 1013cm-2 or defects created in GaN (2DEG).  

2. This is  1.343 x1010 cm -1 for 1.7 µm GaN buffer or 13430000  1010 nm -1  ,1.343 x 

10 7  nm -1   or  in the GaN buffer 1.343 nm -1   to produce the  given sheet change 

density 
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The fitted donor and acceptor concentrations have been shown to be 6.7 x1015 and 1.7 x 

1015 cm-3 respectively. VGA  is often the dominant acceptor in undoped GaN.   

 

Table 7.3 Loss of sheet carrier concentration post radiation 

Si3N4  thickness Δns 

0 -.079 x E13cm-2 

20 .019 x E13cm-2 

50 .014 x E13cm-2 

120 .008 x E13cm-2 

 

 

Effect of electron irradiation is summarized in the following model: 

 

 

Figure 7.7. Simplified damage model for electron irradiation effects on AlGaN\GaN. 

 

The production of Gallium vacancies and Nitrogen interstitials is at a rate of 1- 10 

cm-1, and the densities of these point defects would be 1016 – 1017 cm-3. If the GaN buffer 

Rad->acceptor type defects-> 

VGa  ,NI   => n ↓  

VGa    NI  scattered    => μ ↓   σ↓  

ρ↑ 

Damage 
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layer is 1 µm, then 1017 cm-3 acceptor-type defects would produce a sheet acceptor charge 

of 1013 cm-2, which is comparable to the 2DEG charge of 1013 cm-2. The defect 

production algorithm in chapter 5, section 5.4, calculated a production rate of 23.9 x108 

nm-3 for defects in the GaN with N and Ga. These defects would be the ones created by 

the primary 1MeV electrons and do not account for the secondary electrons or the 

backscattered electrons. So the total radiation induced defect population is actually the 

value stated by D. Look (Look, 2001).  

 

7.2.  Conclusions and Model for Radiation Effects Shown in Photoluminescence 

The Si3N4 passivation layer shows a monatomic variation with PL intensity prior 

to 1MeV radiation, but not so for Hall system characterization. The post radiation Pl 

gives a 50nm peak and a 20 nm minimum in the deep center range, but then reverses to 

monatomic variation in the near band edge range. There is a shift in the main D0 X center 

in the rear band edge do to mismatch lattice constants which results from tensile strain.  

The Pl gives the spatial localization of impurities such as oxygen and silicon, 

which are precursors to the D0 X centers, deeper impurities like magnesium, and Vn and 

VGa donor information.  

The model that follows accounts for the observed changes in the Pl results shown 

in the Chapter 5 due to 1 MeV irradiation. The changes with Si3N4 thickness pre-

irradiation were previously explained as due to the attenuation of the PL laser beam going 

through the material, and corresponded linearly to the thickness of the Si3N4 pre-

irradiation, but not post irradiation.  
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Figure 7.8.  Model for radiation damage explaining PL peak changes and change in the 
Nitrogen and Gallium donor and acceptor populations.  
 

The model in Figure 7.8 summarizes the PL radiative peak production events 

before and after 1.0 MeV electron. The diagram on the left is for pre-irradiation (E0), and 

on the right is for post irradiation (E1). For E0, below the conduction band, there is the 

donor, ED level, which starts at approximately 30 meV; the donors here would be shallow 

donors. Above the valence band is the acceptor level EA. Silicon is a known impurity in 

AlGaN/GaN, as well as oxygen. So at about 30meV, a positively charged Si+ 
Ga will drop 

to EA, according to temperature dependence. There are also Si+
Ga, just below the 

conduction band in energy in the ED level and VGA just above the conduction band in 
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energy in the EA level; the VN which are closer to mid-state will retain their electrons 

because they are below the Fermi level, at about 70 meV.  

Excitons, shown as the upper circle of the pairs on the right on the ED level, bind 

to neutral donor, which are shown as the circle attached to them. Here the Si atom is 

neutral on Ga, Si0
Ga ; excitons seek out and bind to neutral donors as described in chapter 

2 sections 2.3.1.1 and 2.3.1.2 .Here it is  proposed one is observing Si0 
Ga because the 

donors with the paired excitons are neutral as revealed in the near band edge PL peak, 

Figure 5.33. There are many neutral donor with which excitons can bind to in this area, 

so the PL peak is high in the near band edge area in the insert plot for E0 in Figure 7.8. 

While this model is showing Si as the neutral donor, but both silicon and oxygen peaks 

show up in the NBE peaks; oxygen (3.46 eV) and silicon (3.466 eV). Other models may 

propose oxygen as the neutral donor. The Pl signal in general is proportional an ED-EA 

model. 

For the post irradiation, E1, shown on the right side of Figure 7.8, the near band 

edge centers are much lower and have degraded as was shown in Figures 5.35 through 

5.38. With shallow center peaks, due to the collapse of exciton –bound to neutral donor, 

less of these pairs are available. The model indicates fewer neutral Si, and fewer centers 

that the excitons can attach themselves to. So the PL signal is lower. Post irradiation, 

there is still a large amount of silicon and/or oxygen atoms, although their electrons may 

have excited to a higher state; some will be remain neutral. Looking deeper in energy, 

when the sample is irradiated- the result is the creation of many VGa and VN vacancies. 

For the VGA in EA, they now all may have electrons. The electrons from the Si0
Ga and 
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Si+
Ga all transition to additional acceptors created in the EA level. With the VN electrons, 

they drop down to form VGa- , negatively charged. Now VN   VN
+ ,as electrons have 

been emitted. 

In chapter 2 it was shown that the deep centers are Ga (YL) or nitrogen (BL) 

vacancy relate. In the case for the YL, the electron radiation is creating more VGa, but not 

enough to effect the intensity of the PL illumination, as can be seen in the E1 plot inset 

on the right side of Figure 7.8, which is also Figure 5.35. This indicates either saturation 

occurring at 2.2 eV or there are now less of the other atoms in the complex that form the 

transition, given in section 5.3.2 of chapter 5. The models shows VGa taking electrons 

from the Si, but it could also be a VGa →O transition. 

Post irradiation, the amount of silicon in the GaN may not be changing, but there 

are VGa, because 1 MeV electrons create VGa., as well as VN. While actually more 

nitrogen vacancies are created-they are electrically neutral so the creation of the VGa will 

have more of an effect.  

This models analysis of the BL area is that the transition VN-> MgGa, which creates 

the PL peak at ~3.0 eV, may not lead to a decrease in peak height because the radiation 

may not be affecting the Mg. Mg is needed in the transition, and the radiation is not 

creating more Mg, but it is creating more VN. So the BL in the plot insert on the right of 

Figure 7.8 for E1 is not changed. These plots have been normalized relative to the near 

band edge peaks.  

If VGa ->ON, or VGa ->SiN is producing the YL, there is enough O or Si for PL peak 

formation post irradiation in the 2.2 eV area, and peak doesn’t change as significantly. 

The Pl peak intensity won’t change as much if the donor population is not strongly 
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affected by the radiation; the subsequent complexing centers necessary for the transition 

to occur at that energy are not strongly reduced. 

The model in Figure 7.8 for the effects of 1.0 MeV electron irradiation on the PL 

can be summarized by the energy conservation equation, which also gives insight into the 

DAP changes occurring post radiation that effect other device characteristics:  

E Donors, E1   + E Acceptors E1    + E Dxo, E0 = E Donors, E0 + E Acceptors, E0  + EVn, E1 + ENI, E1 +E 

VGa, E1   + E GaI, E1   ± E ђΩ + E formation  + E Dxo, E0-E1  

Table 5.3 in chapter 5 summarizes observed traps found by various methods including Pl 

and DLTS.  For each observed change in PL peak, the results are summarized below. 

 

Table 7.4.  Pl Peaks for AlGaN/AlN/GaN, summary of the defect peaks. * If donor 
population not strongly affected by E1, PL won’t change much. 
 

 E0 
0  to 120 nm Si3N4 

E1 
0  to 120 nm Si3N4 

Si (shallow donor) 3.466 eV /(30meV below CB)   Exciton collapse –pairs ↓PL↓ 
Si+

Ga or OGa  NBE-ED  /(30meV below CB) PL↓ donor electrons  to EA  
Si0

Ga ED /(30meV below CB) Electrons excited to CB 
amount↓ PL ↓ 

O (shallow donor) NBE-3.46 eV/(30meV below 
CB) 

Electrons excited to CB 
amount↓ PL ↓ 

BL  3.0 eV E1 increasing VN  
V +N 70 meV –below Ef E1 increasing 
YL 2.2 eV (shallow acceptor) *E1 increasing VGa 

So Pl not changing 
Phonon peaks  ~93 meV from DX Shifted, degraded due to E1 

displacement damage 
Free exciton 3.478 eV collapsed 
VGa EA Increased due to E1 
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7.3.  Radiation Effects on Variation of Si3N4 Thickness on Schottky Leakage 
Current and Related Measurements 

The forward bias in the AlN structure has some temperature dependence; post 

irradiation there is no temperature dependence of forward or reverse bias, indicating there 

is tunneling. The lack of temperature dependence pre irradiation in the reverse bias in 

Figures 6.1 through 6.3 in chapter 6 indicates there could be intrinsic material defect 

mechanisms causing the leakage current in the unpassivated structure. Additionally, the 

device design is a factor in leakage current. Other measurement techniques tie into the 

leakage current results. The DLTS in Figures 6.26 through 6.28 indicates a hole like trap 

H1, a deep trap, in as grown material for unpassivated as well as passivated ,thought to be 

associated with threading dislocations which in turn can cause leakage current in the un-

irradiated structure, explained in chapter 5. Leakage current in intrinsic as grown material 

is also associated with threading dislocations. One such example is identified in the Pl 

spectra for the YL at 2.2 eV. The PL reveal pre –irradiation defects that can be trapping 

centers, particularly due to their level in the band gap. 

While passivation in general has been proven to be beneficial, for the sample set 

used in this research, AlGaN surface passivation with Si3N4 causes an increase of reverse 

bias leakage current and threshold voltage shifts left.        

Post irradiation there is an increase in leakage current, but much less with the 

GaN cap structure as shown in Figure 6.7 in chapter 6. With this structure, since the 

defects introduced by Si3N4 are on the GaN cap passivation layer, there is less tunneling 

that leads to leakage current.  All test structures showed a significantly high leakage 

current leakage current before passivation and irradiation, so all data measurements are 
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evaluated accordingly. To the contrary, Hall data showed with 50 nm passivation 

thickness the unmodulated channel current is preserved.  

After electron irradiation, the Si3N4 improved the post radiation unmodulated 

channel conductivity over the un-passivated structures, but the tradeoff is that it caused 

increased Schottky leakage currents in Ig-Vg. The Schottky leakage current increase was 

more severe after irradiation in passivated HEMTs due to extra trapping in the Schottky 

area for the samples with an AlN interlayer. Due to the processing of the test structures in 

this research, it is believed that this extra trapping due to passivation exceeds that of 

commercially grown and fabricated devices.  

In conclusion, the gate leakage current increase was more severe after irradiation 

in passivated HEMTs because of the added trapping centers due to both the passivation 

and radiation. Post radiation the lack of temperature dependence in the forward and 

reverse bias currents increased implying that the tunneling conduction contributing to 

leakage current increased. The effects of post radiation degradation are shown to be 

passivation interface dependent as opposed to Si3N4 passivation layer thickness 

dependent as in Figure 6.8 of chapter 6, but also as in Figure 6.7 of chapter 6, device 

structure dependent. 

 

7.4.  Radiation Effects on Si3N4 Thickness Variation on Capacitance Voltage and 
Related Measurements 

The 300 k Cg-Vg for the 2 structures indicate a post raditaion Vth shifts ;the Hall 

carrier density data shows there are less carriers.The post radiation Vth shift for the GaN 

cap structure is less than for the AlN structure, indicating either the relative loss of 
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carriers is less or less trapping is occuring, even though it started with less carriers. The 

stretch out of the AlN sample Cg-Vg curves post irradition with passivation indicate the 

Si3N4 is introducing more interface traps in the Schottky area. The increase in Si3N4 

passivation thickness when there is a GaN cap does not directly correspond to a linear 

increase in sheet carrier density because of the polarization/stress combinations that are 

not always additive for the components of equations 7.2 through 7.7  that account for ns. 

Additionally, with a cap structure, the Si3N4 does not interface with the AlGaN, so while 

the passivation can change the field effect it will not passivate the surface donor traps. 

The however the GaN cap acts as a passivation layer, without contributing to an increase 

of 2DEG. 

 

 

Figure 7.9. Cg-Vg showing threshold voltage shifts due to both radiation (dashed lines) 
and passivation thickness in GaN/AlGaN/GaN. 
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Figure.7.10.  For these 50nm passivated samples, there is a threshold voltage shift right 
the GaN cap structure E1, corresponding to a decrease in carrier density, but for the AlN 
there is first right and as it stretches out in the depletion area due to Nit  more of a 
negative bias is required for depletion. 
 

The AlN structure has the highest saturation or “on” capacitance prior to 

irradiation, which is defined as the flat part of the curve in Figure 6.10 of chapter 6. Post 

irradiation, the decreased saturation capacitance in Figures 7.9 and 7.10 can be attributed 

to the decrease in carriers due to radiation induced acceptors and traps in the channel. The 

Hall data in Figures 7.6b and 6.19 of chapter 6 correlate to the saturation capacitance. 

The Cg-Vg curves stretch out in the depletion area (Schottky area) due to the radiation 

induced interface traps NiT, which increase in density with Si3N4 thickness. As explained 

in the previous section on Ig-Vg, there is less tunneling with the GaN cap and there is not 

the stretch out of the Cg-Vg curves with higher passivation thickness in Figure 7.9. The 

passivation is performing a different role post irradiation when there is a GaN cap, but 
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there is a slight stretch out in the depletion region in the unpassivated and 20 nm 

thickness Si3N4. The increased passivation of 50 and 120 nm appears to decrease the 

interface trap buildup. The beneficial effects are further concurred in Figure 6.7 of 

chapter 6 for the use of a GaN cap with Si3N4 passivation. The measurements done for 

the Cg-Vg give results that are passivation layer thickness dependent, wherein a reverse 

bias is applied, which also resemble the thickness dependence shown in the reverse bias 

portion of the Ig-Vg in Figure 6.8 of chapter 6.  

For the cap structure, the decrease in capacitance with Si3N4 passivation layer can 

be explained by the fact that GaN has a higher dielectric constant than Si3N4 in equation 

6.4 b for which Ctot has a 1/ C relationship. Here there are 3 layers in series that 

contribute to the total capacitance. The distance between the Schottky metal and the peak 

waveform “d” is increased in the relationship C =ε0 A/d with a GaN cap, as in Figure 

6.4b of chapter 6 can also explain the lower capacitance of a GaN cap structure as  

opposed to the structure with the AlN interlayer. 

Si3N4 has the ability to passivate acceptors or donors, so a Vth shift left seen in 

Figure 6.12 of chapter 6 would be attributed to this. This can be observed in all samples 

with increasing passivation, with the exception of the AlN” 20 nm anomaly”.                                                                      

Post irradiation for the GaN cap structure, there is a Vth right in all the samples 

except 50nm of passivation thickness in Figures 7.9 and 7.10. The 50 nm of passivation 

in the AlN sample brings additional trapping that stretches out the depletion area left and 

requires more of a negative bias for depletion. For the GaN cap, 50 nm of thickness has 

no shift. The post radiation Hall carrier density shows a decrease in sheet carrier density 

for all samples except for the unpassivated GaN cap sample. With a lower amount of 
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carriers in the channel, less of a negative bias is required for the sample to reach 

depletion so Vth shifts right. With radiation induced traps, there can be hole-like trapping, 

and holes have a slower mobility, which in turn can lead to a positive charge buildup in 

the Schottky metal area.  

Passivation generally improves device performance pre-irradiation. It creates 

higher carrier concentrations in the 2DEG, as shown in the carrier density data in chapter 

5 section 5.2.3. Consistently, the chapter 5 results shows Si3N4 passivation preserves the 

channel mobility under 1.0 MeV electron irradiation with a minimum 50 nm passivation 

layer. The area of the channel, under the Schottky and  controlled by the Schottky suffers 

decreased performance due to the trapping effects at the interfaces which are due to the 

extra  trap centers brought about with the passivation and then radiation, just as in the Ig-

Vg results. Some of this can be mitigated by better transistor design, as the results shown 

are for a HEMT epistack with limited transistor properties. In the post irradiation 

measurements, the passivation decreases the effect of changes in gate currents for GaN 

cap structures but has a somewhat reverse effect for the AlN structure, showing over all 

the GaN structure had less leakage current. Since the barrier height ϕB shown in Figure 

7.11 is proportional to the inverse of the capacitance squared, C-2, the lower capacitances 

of the GaN cap structures would imply a higher barrier height [Sze, p 230]. The 

relationships between Vth, ϕB, and the carrier density (via ND) is shown in equations 7.10 

and 7.11 and Figures 7.14 and 7.15 (in arbitrary units).  

The Vth can be defined as:  

                                       Vth = ϕB –Δ𝐸𝑐
𝑞

 - 𝑞 𝑁𝐷 𝑑𝑑
𝜀

                                                            (7.10) 



229 
 

And the post radiation changes in ΔVth should correspond to the post radiation changes in 

the sheet carrier density: 

    Δns =  𝜀(𝑥)
𝑞𝑑

 (-ΔVth )                                                                             (7.11) 

The shifts are all left and give positive values for ΔVth , which would mean the sheet 

carrier density decreases.  

 

 

Figure 7.11. Figure showing the decrease in barrier height due to trap assisted tunneling, 
ϕB.  
 

 

7.4.1.  Changes in Threshold Voltage and Barrier Height and Tunneling Effects 

The changes in barrier height in the Figures 7.12 and 7.13 show the passivation 

layer thickness and structure relationships, given in arbitrary units.  Lower barrier heights 

can allow for more tunneling as demonstrated in Figure 7.11 above. Pre-irradiation, 50 

nm and over increases the barrier height for the AlN structure, while for the GaN cap it 

appears to do statistically little accept for a slight lowering.  The traps introduced by way 
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of radiation and or passivation lower the barrier, allowing for leakage current due to 

hopping conduction from trap to trap.  
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Figure 7.12 Si3N4 changes barrier height for AlGaN/AlN/GaN pre irradiation. 
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Figure 7.13. The barrier height differences due to structure as a function of passivation 
thickness, showing that before irradiation 50 nm and above increase the barrier height in 
AlGaN/AlN/GaN but first decrease it in GaN/AlGaN/GaN and then it climbs back up.  
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Figure 7.14. The degradation in barrier height with 1 MeV radiation for 
GaN/AlGaN/GaN, showing it is least for 50 nm passivation thickness. The enlargement 
of the forward bias in Figure 6.8, chapter 6 is on the right. 
 

Post radiation, the relative decrease in barrier height for the GaN/AlGaN/GaN 

structure is slightly less with 50 nm passivation, although the effect of passivation seems 

more interface dependent than thickness, as in shown in the E1 forward bias in Figure 

6.8, chapter 6. The highest leakage currents post irradiation can be linked to the highest 

degradation in barrier heights on the left. The 20 and 50 nm E1 leakage currents are 

statistically equal, as are their E1 barrier heights, although 50 has the lowest percentage 

of change.  
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Table 7.5.  Experimental changes in pre and post radiation threshold voltage shift, carrier 
density and barrier heights. 
 

Si3N4 Thickness ΔVth Δ ns ΔϕB 
0 0.138 positive -.079 x 1013cm-2   ↓ 2.93987↓ 
20 0.718 positive -.019 x 1013cm-2    ↓ 2.55084↓ 
50 -0.03938 negative  .014 x 1013cm-2    ↓ 2.41042↓ 
120 0.0848 positive .008 x 1013cm-2    ↓ 2.74491↓ 

 

Table 7.5 summarizes the changes in post irradiation sheet carrier density, 

threshold voltage shift and barrier height in Figure 7.15. The decrease in carrier densities 

are 24%, 13%, 10%, and 6 % for the 0, 20, 50 and 120 nm samples. The decrease in 

barrier heights are 29%, 26%, 25% and then 28%. The changes in ΔVth, Δ ns , and ΔϕB 

that go into equations 7.8 and 7.9 can begin to explain the observed post radiation 

changes seen the in  Ig-Vg, Cg-Vg and Hall carrier density in this dissertation research as 

well as inter-relate them.   

 Compared to the un-irradiated sample, the 50 nm passivation sample has the least 

amount of barrier height decrease, while it suffers a 10 % loss in carriers, which could 

mean there is less tunneling at this thickness. The Vth is shifting right as equation 7.9 

would imply, due to the negative change in carriers. 
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Figure 7.15. The relative effects of the changes due to 1.0 MeV irradiation on barrier 
height, carrier density and threshold voltage shifts as a function of Si3N4 thickness. The 
negative sheet carrier density change means the change in carriers is decreasing with 
increasing Si3N4 thickness. The units are arbitrary.  
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Figure 7.16 Effect of radiation induced NA to the change in threshold voltage per 
thickness of Si3N4.  
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Figure 7.16 shows the uniqueness of the GaN cap with 50 nm thick passivation 

layer by bringing about a negative change in Vth as compared to the other thicknesses. 

An enlargement of Figures 7.9 and 7.10 is shown in Figure 7.17. 

 

 

 

Figure 7.17.  Correspondence to Figure 7.16 changes in E0E1 threshold voltage shift as a 
function of passivation layer thickness. 
 

 

7.5.  Trap analysis and Radiation effects from Deep Level Transient Spectroscopy  

A number of deep centers in the activation range between 0.18 to 0.85 eV have 

been identified and characterized by the deep level transient spectroscopy results shown 

in chapter 6. The DLTS results show intrinsic traps as well as radiation induced defects 

that contribute to the observed leakage current results as well as decrease in carrier 

density in the Hall results. The intrinsic defects due to the high dislocation density in the 

GaN lattice can act as traps or recombination centers.  
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The electron irradiation induced center associated with VN, the nitrogen vacancy 

trap E, shown in Figures 6.30, 6.31 and 6.32, are believed to have an activation energy, 

from Hall data analysis of ET = 0.06 eV. The center for the nitrogen interstitial trap A2, 

shown in 6.29 through 6.34, has ET = 0.85 eV. For trap E, however, there is a measured 

ET = 0.18 eV. The discrepancy was resolved by those getting similar results (Fang et al, 

2005; Polenta et al, 2000; Look et al, 2005). It was shown that trap E was found to 

consists of 2 traps, ED1 and ED2, each with activation energies ET ~ 0.06 eV, but 

different capture cross sections (σ=1-3 x 10-20 cm2 for ED1 and σ=5-8 x 10-19 cm2 for 

ED2). Both ED1 and ED2 are VN associated. Figure 7.18 below, is taken from the 

analysis done by Fang et al (Fang et al, 2005), and describes the association.  

 

 

Figure.7.18. Figure showing the 2 separate traps ED1 and ED2 that make up trap E. 

 

EI-induced deep center A2, could be a GaI-related defect, if it is associated with 

the 0.85 eV center found by photoluminescence on electron-irradiated GaN, however, A2 
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could be a NI or VGa-NI-related defect, as suggested by Auret et al. (Auret et al, 2002). 

Other 0.85 eV and 0.93 eV centers have been observed by optical detection of magnetic 

resonance in photoluminescence (PL-ODMR) on 2.5-MeV electron-irradiated MOCVD-

GaN, with a dose of 1 x 1018 cm-2, and these centers are believed to be GaI-related (Look 

et al, 2001; McClory, 2008). Another theory is since A2 shows a production rate close to 

that of E, a VN-related center, it is possible that A2 might be an NI-related defect, created 

by the reaction NN→ VN + NI. While there is no absolute consensus of exactly what each 

of the A traps are in Figures 6.29 through 6.34, they are for certain believed to be the 

acceptors created when radiation creates Frenkel pairs, such a NI or VGa-NI-related defect. 

The vacancy trap E is thought to be VN, a N vacancy that explains the post 

irradiation decrease in Hall sheet carrier density. This was discussed in the introduction in 

chapter 3. It is a shallow donor and discussed in the PL model in section 7.2 which shows 

it increasing post irradiation in Table 7.4 as well as in the E1 model. The post irradiation 

BL at ~ 3.0 eV, which is formed in a Mg →VN transition, does not decrease, and non-

normalized data shows it increasing in peak intensity post irradiation in Figure 5.39. VN 

is also known to be a cause of leakage current.   

In section 7.3 the H1 hole like trap was discussed and is believed to be an intrinsic 

cause of leakage current. The C trap in Figure 6.29 and 6.30 is radiation induced while 

the C1 trap in Figure 6.26 is intrinsic. The trap D did not RT anneal out in Figure 6.31. It 

is associated with extended defects and leakage current and can complex with VN. Table 

7.5 summarizes the observed DLTS traps and their effects.  
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Table 7.6.  Observed DTLS traps and their possible effects in samples 

Trap 0 nm Si3N4 
(energy/ eV) 

Effects/correlations 

E0 E1  
A2  Ga related 
defect 

 ET = 0.85 eV Vth shifts, seen in PL 

A 
 

 A (ET=0.66 eV , 
σT=1.3 x 10-15 
cm2  t) 

Negative Vth shifts 

Ax  ET = 1.2 eV acceptor trap 
Leakage current ,Negative Vth 
shifts 

E(production rate 
of ~0.2 cm-1)  

 ET =0.13 eV  VN a shallow donor  
VN ->Leakage current, Vth shifts 
 

C1  ET  =0.44 eV  line defect associated with 
dislocations (line defects) 

C 
 

ET=0.34 eV and 
σT=8.6 x 10-16 
cm2 

 Near surface, penetration ~ 300 
nm into GaN 

D  not affected by 
irradiaion 

ET=0.25 eV and 
σT=9.0 x 10-16 
cm2  

 Leakage current, Vth shifts 

H1   ET  =  0.75 eV  Threading dislocations, leakage 
current  

VN complexes  ED1, ED2  Pl transitions  
 

 

7.6.  Bethe Bloche Electron Damage Models  

Over all Bethe Bloche defect damage algorithm results point to majority of 

displacement damage from the incident 1.0 MeV electron irradiation being to nitrogen 

lattice atom. The more massive gallium nucleus is able to deflect more of the incident 

radiation particles and should suffer less damage percentage wise.  However, Look and 
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Farlow (Look et al, 2003) showed that 1 MeV irradiation creates more gallium vacancies 

by way of: VGA →GaI , where a beam energy of ~530 keV would be needed. This would 

mean that there would be more radiation induced VGA acceptors created at this energy. 

The VN created would not have as a significant effect on the carrier density decrease as 

the VGA. The E1 PL model shows this, as EA donor atoms electrons will lose electrons to 

these acceptors. The charged acceptors, the VGA’s, can also explain the decrease post 

irradiation in mobility, which in section 7.1.4. 

According to Casino simulations, the Si3N4 passivation should reduce the amount 

of damage in the AlGaN. The experimental results show that the passivation does shield 

or offset damage in the channel. The sheet charge density is a function of the field effect 

from the charges in the AlGaN primarily, so when the field is changed due to the donor 

and acceptor densities changes, the sheet charge density should also.  

The defects have been analyzed in the PL and DLTS. Not just the location of the 

defects is important in analyzing radiation induced damage, but the volume. Table 5.4 of 

chapter 5 summarized the amount of defects nm2. This information can be combined with 

Casino hits and backscattering information compared with the carrier removal rate in the 

experimental post radiation sheet carrier density results. Figure 7.19, obtained from one 

of the defect production algorithms used in this research, shows that the cross section for 

damage is higher for gallium at higher energies.  
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Figure 7.19. Cross section as a function of kinetic energy in AlGaN for Gallium (red), 
Nitrogen (blue) and Aluminum (green). The log of the cross section times the dose and 
density will give a defect production rate. Acceptors will be Gallium vacancies, while the 
nitrogen defects can be donors or acceptors.  
 

 

7.7.  Summary of Damage Path by 1 MeV Electron Irradiation Area Models for 
Radiation Damage with Variation of Si3N4 

Figure 7.20 pictorially summarizes the path and components of damage due to 

passivation and 1.0 MeV irradiation on the AlGaN/GaN HEMT structures in this study. 
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Figure 7.20.  Pictorial model that summarizes the 1 MeV electron irradiation damage in 
the channel and in with the Schottky controlled measurements. 
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7.8.  Conclusions and Investigative Questions Answered 

Unpassivated GaN/AlGaN/GaN and 50nm passivated AlGaN/AlN/GaN Cg-Vg -T 

showed an initial Vth shift left at 300 and 400 K as compared to 100 K, in Figures 6.15 

and 6.16. As the device goes deeper into depletion, the stretch out in the Vth increases 

due to NIT.  

For the GaN/AlGaN/GaN structure, in Figures 7.9 and 7.10, post irradiation at 

300k, there is a decrease in saturation capacitance and Vth shifts right. The eventual 

negative Vth shift for 50nm passivation post radiation for AlGaN/AlN/GaN seen in 

Figure 7.10 has been observed previously for 1 MeV electron irradiated Schottky diodes. 

In Figure 3.7, the Cg-Vg curves at high electron irradiation go more negative as fluence 

goes up. Fang et al (Fang et al, 2009) reported a Vth negative shift post radiation with 1 

MeV electron irradiation. The irradiation causes a significant increase in leakage current, 

which is dominated by tunneling, which can be traced to irradiation-induced traps. The 

DLTS Ax trap has been shown to cause negative Vth shifts.  

In the study by A. Polyakov, after the electron irradiation, the capacitance in the 

depletion area was decreased to the values close to parasitic capacitance, indicating that 

the buffer was rendered insulating. His findings point to part of the E trap complex, 

which is also shown in the DLTS in this research. The E trap, which is believed to be the 

VN, showed an activation energy which was that of the main compensating center in 

GaN. This would mean that all shallow donors that were undercompensated in the initial 

samples were compensated by irradiation.  They showed that the main compensating 

agent in electron irradiated n-GaN films is the ~1 eV acceptor related to nitrogen 

interstitials NI which shows up in this research as the trap Ax trap. He suggests negative 
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broad hole traps band due to dislocations and are modulated by positive peaks from 

electron traps like the ones in this study’s E trap group. Therefore electron irradiation of 

AlGaN/GaN HEMTs can be used to “correct” the technology when it fails to produce 

semi-insulating buffers, but only in cases when the concentration of residual donors is not 

much higher than 1015 cm-3. So their explanation of the positive threshold voltage shift 

was explained as due to increased compensation of conductivity in AlGaN barriers. 

The interface traps are positively charged and are drawn to the metal/AlGaN 

interface (or if an GaN/AlN/GaN structure, the metal/GaN interface, which should have 

lower piezo-induced field) and thus creates interface traps. As shown also with radiation 

there is an increase of NIT with Si3N4 thickness and temperature under negative bias 

direction and depending on structure. At 300 K, the radiation produced traps become 

more mobile. 

The defect algorithm shows the nm-3 rate of defects produced is highest for the 

lower atomic number/weight nitrogen, which is less able to deflect the oncoming 1 MeV 

electrons. The post radiation Hall measurements decrease due to acceptor type defects. 

The defect production algorithm shows there is a thickness dependent introduction of 

defects with Si3N4 (Table 5.4.) Casino results show that the AlGaN in an unpassivated 

sample receives the greatest amount of damage; the defect production algorithm shows 

the greatest amount of damage to be to the nitrogen lattice atoms, but the greatest cross 

section of damage due to 1.0 MeV electrons is to the gallium lattice atom. 

Decades of research indicate that the incident radiation creates a nitrogen Frenkel 

pair, evidenced by the above described trap E and traps Ax and A; the 1st being the Vn 

and the A and Ax being NI or VGa-NI-related defect. Both DLTS and PL show evidence of 
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their associated complexes. Acceptor type traps such as the E traps are known to cause 

scattering, and they scatter coulombicly; and if they are in 2DEG, they will reduce the 

mobility. E traps reside either in the GaN buffer or the 2DEG. “A“ traps are thought to 

reside in the bulk. The simplified space charge model of the Nd/Na radiation induced 

changes in Figure 7.7 summarizes the E0-E1 Hall channel measurements and is tied to 

the accumulation region of Schottky measurements. Unlike low energy electron radiation 

damage, 1 MeV irradiation does not room temperature anneal well, as shown in Figure 

6.16. DLTS room temperature annealed results show in Figure 6.31 and 6.32 show the 

persistence of A and D and E traps; and it has been concluded traps A and D are 

associated with extended defects.  

It was shown that radiation creates donors and acceptors from the DLTS, as well 

as in the Hall measurements and PL. Due to the radiation induced increase in NA 

concentration. There is assumed to be a an increase of the trapped interface charges at the 

metal/SC interface, thus lowering of the barrier height  post irradiation,  which in  turn 

facilitates trap assisted tunneling and then increased Schottky leakage current. The 

experimental results show a lowering of the barrier height, summarized in Table 7.5. The 

ΔVth change is related to the Δns change via equation 7.9; with this research, there was a 

decrease in ns which is correlated to increase in acceptors (shown in the PL, DLTS). The 

corresponding Vth change is in Figure 7.16.  

It is believed that the VN are created uniformly throughout the AlGaN; the VN can 

act as a donors or acceptor. VN is verified in the DLTS as trap E and is radiation induced. 

It is also identified the Pl BL and explained in the chapter 5 deep center PL figures and 

persists through all the Si3N4 thickness range. The YL, is attributed to an intrinsic 
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threading dislocation and pre irradiation leakage current. The acceptor in the YL 

transition is VGA, thought to be DLTS trap Ax that is also created post irradiation and 

further contributes to E1 leakage current. The concentration of VGA is greatest in n rich 

GaN. 

Charge balance has been addressed throughout this dissertation research. The 

piezoelectrically induced field and the charge balance changes after radiation has been 

given in equations 7.6 and 7.7. These equations take into account the ΔEc and ϕs structure 

differences explained in chapter 2.2.3 and the experimental differences in the 2DEG 

electron density was shown in sections 5.2.3 and 5.2.4 of chapter 5.  With 1.0 MeV 

electron irradiation, since the doping density is changed by the radiation, the charge 

balance equation for donors and acceptors gives specific values for the changes donor 

and acceptor densities:  

nH + NA = ND / ( 1 + n/ϕD )                                                      (7.12) 

where in equation 7.12  nH  is the experimentally obtained carrier density, NA is the 

acceptor density, ND is the donor density and ϕD = ( 𝑔0
𝑔1

 )N’
c exp (αD /k)T3/2 exp (-ED0 /kT).  

The term𝑔0
𝑔1

 , which here is ½ and N’
c =2(2πmn

* k)3/2 /h3 .With knowing the radiation 

increased acceptor concentration, this can be compared to the experimental post radiation 

nH.  Gauss’s law tells us that the changes in the field equal changes in the charge. This is 

how the charge balance relationships in equations 7.6 and 7.7 where obtained, which give 

the source of the 2DEG due to the additional charges from a passivation layer and 

reduction after electron irradiation. The results are a lower 2DEG sheet charge density 



245 
 

post radiation. The reduction in mobility has already be shown to be due to the increase 

in scattering from τ-1
dis as well as τ-1 ii   in equation 5.1, and thus lowering it.  

 So as a final analysis, the post radiation Hall carrier density results confirm that the 

radiation induced  Frenkel pair causes an acceptor increase, which in turn shows up in the 

Hall measurement  results. The radiation induced donors and acceptors affect Cg-Vg and 

Ig-Vg degradation results. The post radiation Pl points to donors and acceptors created, as 

well as the surface state ionization occurring that collapses some of the post radiation 

NBE Pl peaks. A  Pl damage model is summarized in Table 7.4. The DLTS traps, which 

are summarized in Table 7.6, are from the results shown in chapter 6, section 6.4. They 

have been related to the observed Vth shift changes and increases in leakage current; they 

also tie into the Hall post radiation results and correspond to the PL results. The 

experimental barrier heights in Table 7.5 and plotted in Figure 7.12 through 7.15 explain 

how the Si3N4 and radiation can cause a virtual lowering of the barrier that allows for trap 

and or defect assisted tunneling. Within the framework of the structures studied, there 

appears to be a better or more optimum thickness based on the 2 structures for radiation 

hardness, which is the 50 nm passivated GaN cap.  

The following summarizes the DLTS, PL, Hall, Cg-Vg and Ig-Vg inter-relationships 

for this study: 

•  [VGA]  *[VGA -SiGA]   is occurring at 2.2 eV in E0 PL. H1 trap associated with 

PL YL and intrinsic leakage current.  

•  [VGA]  [VGA- SiGA] is occurring at 2.2 eV in E1 PL, more E1 VGA. Hall 

measurements decrease. 
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•  [VN] increase has occurred, where E trap (VN) is the radiation induced a defect 

that is causing a threshold voltage shift right in the Cg-Vg. It is in the PL BL 

transition  

[VN-> MgGa] 

• For The E1 increase in the 3.0 eV BL, as shown in the post irradiation PL, the 

increase in VN  can account for more BL transitions. 

• The acceptors created in E1, A2 ( VGA) and Ax(NI )which show up in the DLTS in 

GaN, near or in the 2DEG , and can lower the Hall channel carrier density , 

because an acceptor is competing with the positive charges producing the 2DEG 

density, as in  in the charge balance equation ;acceptors  also lower the  mobility. 

A traps are radiation induced and causing a threshold voltage shifts in the Cg-Vg. 

• The other part of the nitrogen Frenkel pair NI , an acceptor defect, which is 

believed to be in the GaN, near or in the 2DEG is , lowers both the Hall channel 

carrier density , because it is competing with the positive charges producing the 

2DEG density, as in  in the charge balance equation ;it also lowers the  mobility. 

In the E1 leakage Ig-Vg, there may have been compensation by way of  [VGA ]   

[VGA -  VN]   + NI 

 

The investigative questions, the response of the transport characteristics (such as 

the mobility and carrier density) to radiation depends on the particular device structure 

and the Si3N4 passivation thickness, and yes, the leakage current response to radiation 

depends on as well Si3N4 passivation thickness as well as the device structure.  
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VIII.  Conclusion 

 

The post radiation results due to the 1.0 MeV electron irradiation show the 

creation of shallow donors as well as deep and shallow acceptors. These defects create 

scattering centers and thus decrease the net mobility. The scattering is Coulombic and can 

be in both the GaN (affecting the 2DEG) and the AlGaN. 

There is pre-irradiation gate leakage because of the existing intrinsic material 

defects that provide preferential pathways for hopping conduction. Post-radiation induced 

traps are introduced at the Schottky metal/AlGaN interface as well as throughout the 

structure. There are effects from ionization, but the damage of concern for AlGaN/GaN is 

nitrogen vacancies and interstitials, and gallium vacancies.  The Ga vacancies occur when 

the incident electron irradiation has enough energy to move the atom from its normal 

lattice position, which results in more damage in the nitrogen sub-lattice.  For the 

structures with an AlGaN/AlN/GaN, there is a linear dependence on Si3N4 thickness in 

the saturation region Cg-Vg results. With both structures, the passivation thickness 

dependence is correlated to carrier density. The GaN cap in GaN/AlGaN/GaN changes 

the surface potential at the metal interface; as compared to the AlGaN/AlN/GaN,  which 

then changes the net piezo-electric induced charge at the 2DEG interface and thereby the 

2DEG sheet charge density. Carrier-density saturation occurs with a 50-nm passivation 

layer with a GaN cap, but peaks at 120-nm passivation without the cap.  It is theorized 

that the Si3N4 can produce or enhance the surface donors, resulting in higher carrier 

density, but with the added centers and defects brought about with this increased 
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passivation layer, mobility goes down. Its fixed positive charge increases the net charge 

at the 2DEG interface that attracts carriers into the triangular quantum well.  

Since Si3N4 eliminates (or reduces) the surface donor and/or acceptor states, 

which cause trapping, in the presence of irradiation it can offset the damage. The incident 

radiation beam creates acceptors as well as donors, but it can also be destroying donors 

species. When creating acceptors in GaN, the 2DEG competes with these acceptors. It is 

thought that part of the ability of Si3N4 to passivate is due to the way it is processed, 

which is in a very hydrogen-rich environment. There is extensive research showing 

radiation induced traps are affected by hydrogen. Due to the migration of hydrogen 

related species, devices using Si3N4 have a lower sensitivity or radiation response than 

those using other passivation materials such as silicon carbide or other deposited oxides 

or no passivation. 

The presence of either a 50- or 120-nm Si3N4 passivation layer preserves the 

channel transport for both structures under 1.0 MeV electron irradiation, which appears to 

be an optimum range of passivation thickness. The structure with the GaN cap shows 

better post radiation Schottky measurements. The purpose of the cap is to reduce surface 

charge buildup. Additionally, if the decrease in barrier height is related to the increase in 

acceptor type defects can be related, then 50 nm passivation for this structure is most 

effective against radiation damage, as it experiences the lowest barrier height reduction.  

It can be concluded that Si3N4 preserves the surface donor states in the presence 

of irradiation, thus offsetting the damage. And it can be concluded that the use of a GaN 

cap as used in this study, as compared a structure without a GaN cap, makes a structure 

more radiation hard.   
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8.1.  Significance of Research 

This research gives the materials characterization of performance and reliability 

limiting factors such as traps as a result of 1.0 MeV radiation on test structures with 

varying thickness of silicon nitride passivation. This information can be used to identify 

some of the intrinsic radiation-induced material defects which will enable design of better 

AlGaN/GaN HEMTs.  

While these were test structures in this research, the information obtained from 

Hall carrier density, mobility, conductivity, PL, Cg-Vg, Ig-Vg, and DLTS provide  as 

well as structure/effect and radiation damage models presented  as a function of Si3N4  

layer thickness can be used and combined with other modes of characterization such as 

stress and thermal analysis to better understand the intrinsic and radiation induced 

material defect limiting defects and traps that affect AlGaN/GaN HEMT lifetime and 

reliability. This, in turn, may be applied to optimize the device critical performance. 

Even though there are a number of limiting design constraints with these samples 

in determining gate current measurements (in this case Schottky measurements), the 

observed Hall results that show peak device performance with 50 nm Si3N4 passivation 

layer thickness can be used as a template to polarization engineer more rad hard 

structures.   

8.2.  Recommendations for Future Research 

Future research should include a comprehensive model of damage that includes 

all of the contributions to device failure in radiation intense environments and study them 
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as a function of Si3N4 layer thickness. Emphasis should be put on analyzing the stress 

changes with Si3N4 thickness in relation to other device characteristics. Configurations 

should first be modeled to reduce the parameter set of contributions. Then, 

experimentally, with a reduced parameter set, and well-designed transistors, test to 

determine how performance varies with increments in the range of 50- through 120-nm 

Si3N4 thickness with electron, proton and neutron irradiation since the present study 

reveals that is a useful range for improving device metrics.  
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